Two-dimensional numerical simulations with Eulerian–Lagrangian method are conducted to study propagation and extinction of stoichiometric hydrogen/air detonations in fine water sprays. Parameterized by water mass loading and droplet size, a detonation extinction map is predicted. Detonation extinction occurs with larger mass loading and/or smaller droplet size. General features of water droplets and local detonation frontal structures are well captured. Numerical soot foils are used to characterize the influence of mass loading and droplet size on the detonation wave. The results also show that the detonation cell size increases with increased mass loading or decreased droplet size. Analysis on unsteady detonation extinction process is performed with the evolutions of detonation frontal structure, spatial distribution of thermochemical variables, and interphase transfer rates (mass, energy, and momentum). Moreover, the chemical explosive mode analysis reveals that for stable detonation, thermal runaway dominates behind the Mach stem, while chemical propensities of autoignition and thermal runaway appear alternately behind the incident wave. When the induction zone length increases as the reaction front (RF) and shock front (SF) are decoupled, localized burned pockets surrounded by the autoignition chemical explosive mixture can be observed. In addition, the interactions between detonation wave and water droplets demonstrate that the energy and momentum transfer have more direct interaction with SF and RF than the mass transfer. The interphase transfer rates increase with the water mass loading. Under the same mass loading, the smaller the droplet size, the larger the interphase transfer rates. However, the size of fine water droplets has a limited influence on the interphase momentum exchange. Moreover, high energy and mass transfer rates are observed at the onset of detonation extinction, and they gradually decrease when the reaction and detonation fronts are decoupled.

1.
E. S.
Oran
,
G.
Chamberlain
, and
A.
Pekalski
, “
Mechanisms and occurrence of detonations in vapor cloud explosions
,”
Prog. Energy Combust. Sci.
77
,
100804
(
2020
).
2.
G.
Atkinson
,
E.
Cowpe
,
J.
Halliday
, and
D.
Painter
, “
A review of very large vapour cloud explosions: Cloud formation and explosion severity
,”
J. Loss Prev. Process Ind.
48
,
367
375
(
2017
).
3.
C.
Catlin
, “
Passive explosion suppression by blast-induced atomisation from water containers
,”
J. Hazard. Mater.
94
,
103
132
(
2002
).
4.
G. O.
Thomas
, “
On the conditions required for explosion mitigation by water sprays
,”
Process Saf. Environ. Prot.
78
,
339
354
(
2000
).
5.
G.
Grant
,
J.
Brenton
, and
D.
Drysdale
, “
Fire suppression by water sprays
,”
Prog. Energy Combust. Sci.
26
,
79
130
(
2000
).
6.
R.
Zheng
,
K.
Bray
, and
B.
Rogg
, “
Effect of sprays of water and NaCl-water solution on the extinction of laminar premixed methane-air counterflow flames
,”
Combust. Sci. Technol.
126
,
389
401
(
1997
).
7.
Y.
Song
and
Q.
Zhang
, “
Quantitative research on gas explosion inhibition by water mist
,”
J. Hazard. Mater.
363
,
16
25
(
2019
).
8.
L. R.
Boeck
,
A.
Kink
,
D.
Oezdin
,
J.
Hasslberger
, and
T.
Sattelmayer
, “
Influence of water mist on flame acceleration, DDT and detonation in H2-air mixtures
,”
Int. J. Hydrogen Energy
40
,
6995
7004
(
2015
).
9.
G.
Jourdan
 et al, “
Attenuation of a shock wave passing through a cloud of water droplets
,”
Shock Waves
20
,
285
296
(
2010
).
10.
A.
Chauvin
,
G.
Jourdan
,
E.
Daniel
,
L.
Houas
, and
R.
Tosello
, “
Experimental investigation of the propagation of a planar shock wave through a two-phase gas-liquid medium
,”
Phys. Fluids
23
,
113301
(
2011
).
11.
K. C.
Adiga
,
H. D.
Willauer
,
R.
Ananth
, and
F. W.
Williams
, “
Implications of droplet breakup and formation of ultra fine mist in blast mitigation
,”
Fire Saf. J.
44
,
363
369
(
2009
).
12.
R.
Ananth
,
H. D.
Willauer
,
J. P.
Farley
, and
F. W.
Williams
, “
Effects of fine water mist on a confined blast
,”
Fire Technol.
48
,
641
675
(
2012
).
13.
D. A.
Schwer
and
K.
Kailasanath
, “
Numerical simulations of the mitigation of unconfined explosions using water-mist
,”
Proc. Combust. Inst.
31
,
2361
2369
(
2007
).
14.
G. O.
Thomas
,
M. J.
Edwards
, and
D. H.
Edwards
, “
Studies of detonation quenching by water sprays
,”
Combust. Sci. Technol.
71
,
233
245
(
1990
).
15.
U.
Niedzielska
,
L. J.
Kapusta
,
B.
Savard
, and
A.
Teodorczyk
, “
Influence of water droplets on propagating detonations
,”
J. Loss Prev. Process Ind.
50
,
229
236
(
2017
).
16.
G.
Jarsalé
,
F.
Virot
, and
A.
Chinnayya
, “
Ethylene–air detonation in water spray
,”
Shock Waves
26
,
561
572
(
2016
).
17.
H.
Watanabe
,
A.
Matsuo
,
K.
Matsuoka
,
A.
Kawasaki
, and
J.
Kasahara
, “
Numerical investigation on propagation behavior of gaseous detonation in water spray
,”
Proc. Combust. Inst.
37
,
3617
3626
(
2019
).
18.
H.
Watanabe
,
A.
Matsuo
,
A.
Chinnayya
,
K.
Matsuoka
,
A.
Kawasaki
, and
J.
Kasahara
, “
Numerical analysis of the mean structure of gaseous detonation with dilute water spray
,”
J. Fluid Mech.
887
,
A4-1
40
(
2020
).
19.
H.
Watanabe
,
A.
Matsuo
,
A.
Chinnayya
,
K.
Matsuoka
,
A.
Kawasaki
, and
J.
Kasahara
, “
Numerical analysis on behavior of dilute water droplets in detonation
,”
Proc. Combust. Inst.
38
,
3709
(
2020
).
20.
T. F.
Lu
,
C. S.
Yoo
,
J. H.
Chen
, and
C. K.
Law
, “
Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: A chemical explosive mode analysis
,”
J. Fluid Mech.
652
,
45
64
(
2010
).
21.
W.
Wu
,
Y.
Piao
,
Q.
Xie
, and
Z.
Ren
, “
Flame diagnostics with a conservative representation of chemical explosive mode analysis
,”
AIAA J.
57
,
1355
1363
(
2019
).
22.
W.
Sutherland
, “
LII. The viscosity of gases and molecular force
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
36
,
507
531
(
1893
).
23.
B. E.
Poling
,
J. M.
Prausnitz
, and
J. P.
O'connell
,
The Properties of Gases and Liquids
(
McGraw-Hill
,
New York
,
2001
), Vol.
5
.
24.
B.
Mcbride
,
S.
Gordon
, and
M.
Reno
,
Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species
(
National Aeronautics and Space Administration
,
1993
), p.
4513
.
25.
G. B.
Macpherson
,
N.
Nordin
, and
H. G.
Weller
, “
Particle tracking in unstructured, arbitrary polyhedral meshes for use in CFD and molecular dynamics
,”
Commun. Numer. Methods Eng.
25
,
263
273
(
2009
).
26.
C. T.
Crowe
,
J. D.
Schwarzkopf
,
M.
Sommerfeld
, and
Y.
Tsuji
,
Multiphase Flows with Droplets and Particles.
(
CRC Press
,
New York
,
1998
).
27.
R. H.
Perry
,
D. W.
Green
, and
J. O.
Maloney
,
Perry's Chemical Engineers' Handbook
, 7th ed. (
McGraw-Hill
,
1998
), p.
35
.
28.
N. A.
Fuchs
,
Evaporation and Droplet Growth in Gaseous Media
, edited by
R. S.
Bradley
(
Pergamon Press
,
1959
).
29.
S. S.
Sazhin
, “
Advanced models of fuel droplet heating and evaporation
,”
Prog. Energy Combust. Sci.
32
,
162
214
(
2006
).
30.
Z.
Huang
,
M.
Zhao
, and
H.
Zhang
, “
Modelling n-heptane dilute spray flames in a model supersonic combustor fueled by hydrogen
,”
Fuel
264
,
116809
(
2020
).
31.
W. E.
Ranz
and
W. R.
Marshall
, “
Evaporation from drops, Part I
,”
Chem. Eng. Prog.
48
,
141
146
(
1952
).
32.
E. N.
Fuller
,
P. D.
Schettler
, and
J. C.
Giddings
, “
A new method for prediction of binary gas-phase diffusion coefficients
,”
Ind. Eng. Chem.
58
,
18
27
(
1966
).
33.
E. L.
Cussler
,
Diffusion: Mass Transfer in Fluid Systems
, 3rd ed. (
Cambridge University Press
,
2009
).
34.
A. B.
Liu
,
D.
Mather
, and
R. D.
Reitz
, “
Modeling the effects of drop drag and breakup on fuel sprays
,” in SAE Technical Paper (
1993
).
35.
S.
Cheatham
and
K.
Kailasanath
, “
Numerical modelling of liquid-fuelled detonations in tubes
,”
Combust. Theory Model.
9
,
23
48
(
2005
).
36.
C. B.
Henderson
, “
Drag coefficients of spheres in continuum and rarefied flows
,”
AIAA J.
14
,
707
708
(
1976
).
37.
O.
Igra
and
K.
Takayama
, “
Shock tube study of the drag coefficient of a sphere in a non-stationary flow
,”
Proc. R. Soc. A
442
,
231
247
(
1993
).
38.
G.
Tedeschi
,
H.
Gouin
, and
M.
Elena
, “
Motion of tracer particles in supersonic flows
,”
Exp. Fluids
26
,
288
296
(
1999
).
39.
Z.
Huang
,
M.
Zhao
,
Y.
Xu
,
G.
Li
, and
H.
Zhang
, “
Eulerian–Lagrangian modelling of detonative combustion in two-phase gas-droplet mixtures with OpenFOAM: Validations and verifications
,”
Fuel
286
,
119402
(
2021
).
40.
H. G.
Weller
,
G.
Tabor
,
H.
Jasak
, and
C.
Fureby
, “
A tensorial approach to computational continuum mechanics using object-oriented techniques
,”
Comput. Phys.
12
,
620
(
1998
).
41.
C. J.
Greenshields
,
H. G.
Weller
,
L.
Gasparini
, and
J. M.
Reese
, “
Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows
,”
Int. J. Numer. Methods Fluids
63
,
1
21
(
2010
).
42.
H.
Zhang
,
M.
Zhao
, and
Z.
Huang
, “
Large eddy simulation of turbulent supersonic hydrogen flames with OpenFOAM
,”
Fuel
282
,
118812
(
2020
).
43.
M.
Zhao
,
J. M.
Li
,
C. J.
Teo
,
B. C.
Khoo
, and
H.
Zhang
, “
Effects of variable total pressures on instability and extinction of rotating detonation combustion
,”
Flow, Turbul. Combust.
104
,
261
290
(
2020
).
44.
M.
Zhao
and
H.
Zhang
, “
Origin and chaotic propagation of multiple rotating detonation waves in hydrogen/air mixtures
,”
Fuel
275
,
117986
(
2020
).
45.
M.
Zhao
and
H.
Zhang
, “
Rotating detonative combustion in partially pre-vaporized dilute n-heptane sprays: Droplet size and equivalence ratio effects
,”
Fuel
304
,
121481
(
2021
).
46.
M.
Zhao
and
H.
Zhang
, “
Large eddy simulation of non-reacting flow and mixing fields in a rotating detonation engine
,”
Fuel
280
,
118534
(
2020
).
47.
Q.
Meng
,
M.
Zhao
,
H.
Zheng
, and
H.
Zhang
, “
Eulerian–Lagrangian modelling of rotating detonative combustion in partially pre-vaporized n-heptane sprays with hydrogen addition
,”
Fuel
290
,
119808
(
2021
).
48.
A.
Kurganov
,
S.
Noelle
, and
G.
Petrova
, “
Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton–Jacobi equations
,”
SIAM J. Sci. Comput.
23
,
707
740
(
2001
).
49.
M. Ó.
Conaire
,
H. J.
Curran
,
J. M.
Simmie
,
W. J.
Pitz
, and
C. K.
Westbrook
, “
A comprehensive modeling study of hydrogen oxidation
,”
Int. J. Chem. Kinet.
36
,
603
622
(
2004
).
50.
Y.
Mahmoudi
and
K.
Mazaheri
, “
High resolution numerical simulation of triple point collision and origin of unburned gas pockets in turbulent detonations
,”
Acta Astronaut.
115
,
40
51
(
2015
).
51.
K.
Mazaheri
,
Y.
Mahmoudi
, and
M. I.
Radulescu
, “
Diffusion and hydrodynamic instabilities in gaseous detonations
,”
Combust. Flame
159
,
2138
2154
(
2012
).
52.
S.
Yungster
and
K.
Radhakrishnan
, “
Pulsating one-dimensional detonations in hydrogen-air mixtures
,”
Combust. Theory Model.
8
,
745
770
(
2004
).
53.
Z.
Liu
and
A. K.
Kim
, “
A Review of water mist fire suppression systems—Fundamental studies
,”
J. Fire Prot. Eng.
10
,
32
50
(
1999
).
54.
R. W.
Houim
and
R. T.
Fievisohn
, “
The influence of acoustic impedance on gaseous layered detonations bounded by an inert gas
,”
Combust. Flame
179
,
185
198
(
2017
).
55.
Y.
Mahmoudi
,
K.
Mazaheri
, and
S.
Parvar
, “
Hydrodynamic instabilities and transverse waves in propagation mechanism of gaseous detonations
,”
Acta Astronaut.
91
,
263
282
(
2013
).
56.
M. H.
Lefebvre
and
E. S.
Oran
, “
Analysis of the shock structures in a regular detonation
,”
Shock Waves
4
,
277
283
(
1995
).
57.
S. O.
Saunders
, “
Experimental observations of the transition to detonation in an explosive gas
,”
Proc. R. Soc. London., Ser. A:. Math. Phys. Sci.
295
,
13
28
(
1966
).
58.
A. I.
Gavrikov
,
A. A.
Efimenko
, and
S. B.
Dorofeev
, “
A model for detonation cell size prediction from chemical kinetics
,”
Combust. Flame
120
,
19
33
(
2000
).
59.
R. A.
Strehlow
,
R. E.
Maurer
, and
S.
Rajan
, “
Transverse waves in detonations. I: Spacing in the hydrogen-oxygen system
,”
AIAA J.
7
,
323
328
(
1969
).
60.
R. K.
Kumar
, “
Detonation cell widths in hydrogenoxygendiluent mixtures
,”
Combust. Flame
80
,
157
169
(
1990
).
61.
V. N.
Gamezo
,
D.
Desbordes
, and
E. S.
Oran
, “
Formation and evolution of two-dimensional cellular detonations
,”
Combust. Flame
116
,
154
165
(
1999
).
62.
E. S.
Oran
,
J. W.
Weber
,
E. I.
Stefaniw
,
M. H.
Lefebvre
, and
J. D.
Anderson
, “
A numerical study of a two-dimensional H2-O2-Ar detonation using a detailed chemical reaction model
,”
Combust. Flame
113
,
147
163
(
1998
).
63.
K.
Mazaheri
,
Y.
Mahmoudi
,
M.
Sabzpooshani
, and
M. I.
Radulescu
, “
Experimental and numerical investigation of propagation mechanism of gaseous detonations in channels with porous walls
,”
Combust. Flame
162
,
2638
2659
(
2015
).
64.
S.
Taileb
,
J.
Melguizo-Gavilanes
, and
A.
Chinnayya
, “
Influence of the chemical modeling on the quenching limits of gaseous detonation waves confined by an inert layer
,”
Combust. Flame
218
,
247
259
(
2020
).
65.
S. H.
Lam
, “
Singular perturbation for stiff equations using numerical methods
,” in
Recent Advances in the Aerospace Sciences, B. C.
, edited by
C.
Casci
(
Springer
,
Boston, MA
,
1985
), pp.
3
19
.
66.
S. H.
Lam
and
D. A.
Goussis
, “
The CSP method for simplifying kinetics
,”
Int. J. Chem. Kinet.
26
,
461
486
(
1994
).
67.
S. H.
Lam
, “
Using CSP to understand complex chemical kinetics
,”
Combust. Sci. Technol.
89
,
375
404
(
1993
).
68.
S. H.
Lam
, “
Reduced chemistry-diffusion coupling
,”
Combust. Sci. Technol.
179
,
767
786
(
2007
).
69.
M.
Zhao
,
Z.
Ren
, and
H.
Zhang
, “
Pulsating detonative combustion in n-heptane/air mixtures under off-stoichiometric conditions
,”
Combust. Flame
226
,
285
301
(
2021
).
70.
W.
Xie
,
W.
Wu
,
Z.
Ren
,
H.
Liu
, and
M.
Ihme
, “
Effects of evaporation on chemical reactions in counterflow spray flames
,”
Phys. Fluids
33
,
065115
(
2021
).
71.
Z.
Luo
,
C. S.
Yoo
,
E. S.
Richardson
,
J. H.
Chen
,
C. K.
Law
, and
T.
Lu
, “
Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow
,”
Combust. Flame
159
,
265
274
(
2012
).
72.
J. H. S.
Lee
and
M. I.
Radulescu
, “
On the hydrodynamic thickness of cellular detonations
,”
Combust. Explos. Shock Waves
41
,
745
765
(
2005
).
73.
E. S.
Oran
and
V. N.
Gamezo
, “
Origins of the deflagration-to-detonation transition in gas-phase combustion
,”
Combust. Flame
148
,
4
47
(
2007
).
74.
G.
Ciccarelli
,
T.
Ginsberg
,
J.
Boccio
,
C.
Economos
,
K.
Sato
, and
M.
Kinoshita
, “
Detonation cell size measurements and predictions in hydrogen-air-steam mixtures at elevated temperatures
,”
Combust. Flame
99
,
212
220
(
1994
).

Supplementary Material

You do not currently have access to this content.