In the presence of strong background rotation, the velocity field tends to become quasi-two-dimensional, which leads to the inverse energy cascade. If the damping is small enough, then the energy is accumulated at the largest scales of the system, forming coherent columnar vortex structures known as condensates. Recently, it was found that the radial velocity profiles of axisymmetric cyclones and anticyclones are described by the dependence UGφ(r)=±ϵ/νrln(R/r), where ϵ is statistically stationary turbulent forcing power per unit mass, ν is the kinematic viscosity of a fluid, and R is the transverse size of the vortex. However, the corresponding theory did not take into account the boundary effects and, therefore, was mainly applicable to numerical simulations with periodic boundary conditions. Here, we demonstrate that for typical experimental conditions, the damping of the condensate far enough from the symmetry axis is determined by the linear Ekman friction α=2Ω0E1/2 associated with the no-slip conditions at the lower and upper boundaries of the system, where Ω0 is the angular velocity of the background rotation and E is the Ekman number. In this case, the azimuthal velocity of the coherent vortex does not depend on the distance to the vortex center and is determined by the expression UGφ=±3ϵ/α. We discuss the structure of the coherent vortex in this case and compare the results with velocity profiles of condensates in two-dimensional systems.

1.
J.
Proudman
, “
On the motion of solids in a liquid possessing vorticity
,”
Proc. R. Soc. London, Ser. A
92
,
408
424
(
1916
).
2.
G. I.
Taylor
, “
Motion of solids in fluids when the flow is not irrotational
,”
Proc. R. Soc. London, Ser. A
93
,
99
113
(
1917
).
3.
A.
McEwan
, “
Angular momentum diffusion and the initiation of cyclones
,”
Nature
260
,
126
128
(
1976
).
4.
E.
Hopfinger
,
F.
Browand
, and
Y.
Gagne
, “
Turbulence and waves in a rotating tank
,”
J. Fluid Mech.
125
,
505
534
(
1982
).
5.
J. E.
Ruppert-Felsot
,
O.
Praud
,
E.
Sharon
, and
H. L.
Swinney
, “
Extraction of coherent structures in a rotating turbulent flow experiment
,”
Phys. Rev. E
72
,
016311
(
2005
).
6.
P.
Staplehurst
,
P.
Davidson
, and
S.
Dalziel
, “
Structure formation in homogeneous freely decaying rotating turbulence
,”
J. Fluid Mech.
598
,
81
(
2008
).
7.
F.
Moisy
,
C.
Morize
,
M.
Rabaud
, and
J.
Sommeria
, “
Decay laws, anisotropy and cyclone-anticyclone asymmetry in decaying rotating turbulence
,”
J. Fluid Mech.
666
,
5
35
(
2011
).
8.
B.
Gallet
,
A.
Campagne
,
P.-P.
Cortet
, and
F.
Moisy
, “
Scale-dependent cyclone-anticyclone asymmetry in a forced rotating turbulence experiment
,”
Phys. Fluids
26
,
035108
(
2014
).
9.
N.
Machicoane
,
F.
Moisy
, and
P.-P.
Cortet
, “
Two-dimensionalization of the flow driven by a slowly rotating impeller in a rapidly rotating fluid
,”
Phys. Rev. Fluids
1
,
073701
(
2016
).
10.
G.
Boffetta
,
F.
Toselli
,
M.
Manfrin
, and
S.
Musacchio
, “
Cyclone–anticyclone asymmetry in rotating thin fluid layers
,”
J. Turbul.
22
,
242
253
(
2020
).
11.
M.
Brunet
,
B.
Gallet
, and
P.-P.
Cortet
, “
Shortcut to geostrophy in wave-driven rotating turbulence: The quartetic instability
,”
Phys. Rev. Lett.
124
,
124501
(
2020
).
12.
P.
Bartello
,
O.
Métais
, and
M.
Lesieur
, “
Coherent structures in rotating three-dimensional turbulence
,”
J. Fluid Mech.
273
,
1
29
(
1994
).
13.
P.
Yeung
and
Y.
Zhou
, “
Numerical study of rotating turbulence with external forcing
,”
Phys. Fluids
10
,
2895
2909
(
1998
).
14.
L. M.
Smith
and
F.
Waleffe
, “
Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence
,”
Phys. Fluids
11
,
1608
1622
(
1999
).
15.
K.
Yoshimatsu
,
M.
Midorikawa
, and
Y.
Kaneda
, “
Columnar eddy formation in freely decaying homogeneous rotating turbulence
,”
J. Fluid Mech.
677
,
154
(
2011
).
16.
L.
Biferale
,
F.
Bonaccorso
,
I. M.
Mazzitelli
,
M. A.
van Hinsberg
,
A. S.
Lanotte
,
S.
Musacchio
,
P.
Perlekar
, and
F.
Toschi
, “
Coherent structures and extreme events in rotating multiphase turbulent flows
,”
Phys. Rev. X
6
,
041036
(
2016
).
17.
N.
Yokoyama
and
M.
Takaoka
, “
Hysteretic transitions between quasi-two-dimensional flow and three-dimensional flow in forced rotating turbulence
,”
Phys. Rev. Fluids
2
,
092602
(
2017
).
18.
K.
Seshasayanan
and
A.
Alexakis
, “
Condensates in rotating turbulent flows
,”
J. Fluid Mech.
841
,
434
462
(
2018
).
19.
K.
Seshasayanan
and
B.
Gallet
, “
Onset of three-dimensionality in rapidly rotating turbulent flows
,”
J. Fluid Mech.
901
,
R5
(
2020
).
20.
A.
van Kan
and
A.
Alexakis
, “
Critical transition in fast-rotating turbulence within highly elongated domains
,”
J. Fluid Mech.
899
,
A33
(
2020
).
21.
U.
Frisch
and
A. N.
Kolmogorov
,
Turbulence: The Legacy of A.N. Kolmogorov
(
Cambridge University Press
,
1995
).
22.
G.
Boffetta
and
R. E.
Ecke
, “
Two-dimensional turbulence
,”
Annu. Rev. Fluid Mech.
44
,
427
451
(
2012
).
23.
I.
Kolokolov
,
L.
Ogorodnikov
, and
S.
Vergeles
, “
Structure of coherent columnar vortices in three-dimensional rotating turbulent flow
,”
Phys. Rev. Fluids
5
,
034604
(
2020
).
24.
V. M.
Parfenyev
,
I. A.
Vointsev
,
A. O.
Skoba
, and
S. S.
Vergeles
, “
Velocity profiles of cyclones and anticyclones in a rotating turbulent flow
,”
Phys. Fluids
33
,
065117
(
2021
).
25.
F. S.
Godeferd
and
F.
Moisy
, “
Structure and dynamics of rotating turbulence: A review of recent experimental and numerical results
,”
Appl. Mech. Rev.
67
,
030802
(
2015
).
26.
G. K.
Vallis
,
Atmospheric and Oceanic Fluid Dynamics
(
Cambridge University Press
,
2017
).
27.
J.
Pedlosky
 et al.,
Geophysical Fluid Dynamics
(
Springer
,
1987
), Vol.
710
.
28.
L. Z.
Sansón
and
G.
Van Heijst
, “
Nonlinear Ekman effects in rotating barotropic flows
,”
J. Fluid Mech.
412
,
75
91
(
2000
).
29.
L. Z.
Sansón
, “
The asymmetric Ekman decay of cyclonic and anticyclonic vortices
,”
Eur. J. Mech.-B
20
,
541
556
(
2001
).
30.
I.
Kolokolov
and
V.
Lebedev
, “
Structure of coherent vortices generated by the inverse cascade of two-dimensional turbulence in a finite box
,”
Phys. Rev. E
93
,
033104
(
2016
).
31.
J.
Laurie
,
G.
Boffetta
,
G.
Falkovich
,
I.
Kolokolov
, and
V.
Lebedev
, “
Universal profile of the vortex condensate in two-dimensional turbulence
,”
Phys. Rev. Lett.
113
,
254503
(
2014
).
32.
A. V.
Orlov
,
M. Y.
Brazhnikov
, and
A. A.
Levchenko
, “
Large-scale coherent vortex formation in two-dimensional turbulence
,”
JETP Lett.
107
,
157
162
(
2018
).
33.
I.
Kolokolov
and
V.
Lebedev
, “
Coherent vortex in two-dimensional turbulence: Interplay of viscosity and bottom friction
,”
Phys. Rev. E
102
,
023108
(
2020
).
34.
A. B.
Buzovkin
,
I.
Kolokolov
,
V.
Lebedev
, and
S.
Vergeles
, “
Coherent vortex in two-dimensional turbulence around a rotating disc
,”
JETP Lett.
111
,
442
446
(
2020
).
35.
A.
Ranjan
,
P.
Davidson
,
U. R.
Christensen
, and
J.
Wicht
, “
Internally driven inertial waves in geodynamo simulations
,”
Geophys. J. Int.
213
,
1281
1295
(
2018
).
36.
X. M.
de Wit
,
A. J. A.
Guzmán
,
H. J.
Clercx
, and
R. P.
Kunnen
, “
Discontinuous transitions towards vortex condensates in buoyancy-driven rotating turbulence: Analogies with first-order phase transitions
,” arXiv:2106.01158 (
2021
).
37.
A.
Frishman
and
C.
Herbert
, “
Turbulence statistics in a two-dimensional vortex condensate
,”
Phys. Rev. Lett.
120
,
204505
(
2018
).
You do not currently have access to this content.