The turbulent flow of spatially developing and high-speed hydrogen/air mixing layers subject to small skew angle ζ is systematically investigated by means of direct numerical simulation. The present database features both detailed chemistry and detailed transport (i.e., Soret, Dufour, and bulk viscosity effects). The angle ζ measures the misalignment of the two asymptotic streams of fluid, whose interaction creates the turbulent mixing region. Numerical simulations have been carried out either in the absence of skewing, namely, perfectly parallel streams (ζ=0°), or in skew angles ζ=5°,10°, and 15°. The streamwise evolution and the self-similar state of turbulence statistics of skewed cases are reported and compared to the unskewed and reference case. The present computations indicate that the transitional region and the fully developed turbulence region depends strongly on the degree of flow skewing at the inlet. In particular, we find that skewing yields faster growth of the inlet structures, thus leading to mixing enhancement. The underlying mechanisms responsible for turbulence modulation are analyzed through the transport equation of the Reynolds stresses. One possible perspective of the present work concerns the mixing control and a reliable comparison between the experiment, simulations, and turbulence modeling.

1.
F. S.
Billig
,
R. C.
Orth
, and
M.
Lasky
, “
A unified analysis of gaseous jet penetration
,”
AIAA J.
9
,
1048
1058
(
1971
).
2.
N.
Zettervall
and
C.
Fureby
, “
A computational study of Ramjet, Scramjet and dual-mode Ramjet combustion in combustor with a cavity flameholder
,” in
AIAA Aerospace Sciences Meeting
(
AIAA
,
2018
), p.
1146
.
3.
Y.
Zhang
,
W.
Liu
, and
B.
Wang
, “
Effects of oblique and transverse injection on the characteristics of jet in supersonic crossflow
,”
Acta Astronaut.
115
,
356
366
(
2015
).
4.
V.
Vinogradov
,
Y.
Shikhman
, and
C.
Segal
, “
Review of fuel pre-injection studies in a high speed airflow
,” in
44th AIAA Aerospace Sciences Meeting and Exhibit
(
AIAA
,
2006
), p.
1030
.
5.
X.
Yao
,
J.
Tan
, and
D.
Zhang
, “
Combustion of H2/air supersonic mixing layers with splitter plate: Growth rates and transport characteristic
,”
Acta Astronaut.
165
,
401
413
(
2019
).
6.
Y.
Xiao
,
T.
Jianguo
,
Z.
Dongdong
, and
L.
Yao
, “
Combustion of H2/air supersonic mixing layers with splitter plate: Flame structure and statistical characteristics
,”
Acta Astronaut.
173
,
279
293
(
2020
).
7.
M. K.
Smart
and
M. R.
Tetlow
, “
Orbital delivery of small payloads using hypersonic airbreathing propulsion
,”
J. Spacecr. Rockets
46
,
117
125
(
2009
).
8.
Y.
Zheng
,
C.
Yan
, and
Y.
Zhao
, “
Uncertainty and sensitivity analysis of inflow parameters for HyShot II scramjet numerical simulation
,”
Acta Astronaut.
170
,
342
353
(
2020
).
9.
L.
Marshall
,
G.
Corpening
, and
R.
Sherrill
, “
A chief engineer's view of the NASA X-43A scramjet flight test
,” in
AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference
(
AIAA
,
2005
), p.
3332
.
10.
H.-J.
Kaltenbach
, “
The effect of sweep-angle variation on the turbulence structure in a separated, three-dimensional flow
,”
Theor. Comput. Fluid Dyn.
16
,
187
210
(
2003
).
11.
J.
Jiménez
,
M.
Cogollos
, and
L. P.
Bernal
, “
A perspective view of the plane mixing layer
,”
J. Fluid Mech.
152
,
125
143
(
1985
).
12.
Q.
Zhou
,
F.
He
, and
M. Y.
Shen
, “
Direct numerical simulation of a spatially developing compressible plane mixing layer: Flow structures and mean flow properties
,”
J. Fluid Mech.
711
,
437
(
2012
).
13.
K. U.
Kim
,
G. S.
Elliott
, and
J.
Craig Dutton
, “
Three-dimensional experimental study of compressibility effects on turbulent free shear layers
,”
AIAA J.
58
,
133
147
(
2020
).
14.
J.
Swithebank
and
N. A.
Chigier
, “
Vortex mixing for supersonic combustion
,”
Symp. (Int.) Combust.
12
,
1153
1162
(
1969
).
15.
G.
Lu
and
S. K.
Lele
, “
Asymptotic growth of disturbances from spatially compact source in a skewed mixing layer
,”
Phys. Fluids
11
,
1153
1160
(
1999
).
16.
C. J.
Chesnakas
and
R. L.
Simpson
, “
Measurements of the turbulence structure in the vicinity of a 3-D separation
,”
J. Fluid Mech.
118
,
268
275
(
1996
).
17.
T. F.
Fric
, “
Skewed shear-layer mixing within a duct
,”
AIAA J.
34
,
847
849
(
1996
).
18.
G.
Lu
and
S.
Lele
, “
Spatial growth of disturbances in a skewed compressible mixing layer
,”
31st Aerospace Sciences Meeting
(
AIAA
,
1993
), p. 214.
19.
M.
Di Renzo
,
N.
Oberoi
,
J.
Larsson
, and
S.
Pirozzoli
, “
Crossflow effects on shock wave/turbulent boundary layer interactions
,”
Theor. Comput. Fluid Dyn.
(published online) (
2021
).
20.
M.
Meldi
,
A.
Mariotti
,
M. V.
Salvetti
, and
P.
Sagaut
, “
Numerical investigation of skewed spatially evolving mixing layers
,”
J. Fluid Mech.
897
,
A35
(
2020
).
21.
M. D.
Slessor
,
M.
Zhuang
, and
P. E.
Dimotakis
, “
Turbulent shear-layer mixing: Growth-rate compressibility scaling
,”
J. Fluid Mech.
414
,
35
45
(
2000
).
22.
H.
Wang
,
P.
Li
,
M.
Sun
, and
J.
Wei
, “
Entrainment characteristics of cavity shear layers in supersonic flows
,”
Acta Astronaut.
137
,
214
221
(
2017
).
23.
R.
Boukharfane
,
A.
Er-Raiy
,
M.
Parsani
, and
B.
Hadri
, “
Skewness effects on the turbulence structure in a high-speed compressible and multi-component inert mixing layers
,” in
AIAA Aviation 2021 Forum
(
AIAA
,
2021
), p.
2915
.
24.
J.
Urzay
, “
Supersonic combustion in air-breathing propulsion systems for hypersonic flight
,”
Annu. Rev. Fluid Mech.
50
,
593
627
(
2018
).
25.
W.
Yao
,
Y.
Lu
,
K.
Wu
,
J.
Wang
, and
X.
Fan
, “
Modeling analysis of an actively cooled scramjet combustor under different kerosene/air ratios
,”
J. Propul. Power
34
,
975
991
(
2018
).
26.
W.-S.
Don
and
R.
Borges
, “
Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes
,”
J. Comput. Phys.
250
,
347
372
(
2013
).
27.
N. A.
Adams
and
K.
Shariff
, “
A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems
,”
J. Comput. Phys.
127
,
27
51
(
1996
).
28.
R.
Boukharfane
,
A.
Er-Raiy
, and
M.
Parsani
, “
Compressibility effects on homogeneous isotropic turbulence using Schur decomposition of the velocity gradient tensor
,” in
AIAA Scitech 2021 Forum
(
AIAA
,
2021
), p.
1446
.
29.
S.
Gottlieb
and
C.-W.
Shu
, “
Total variation diminishing Runge–Kutta schemes
,”
Math. Comput.
67
,
73
85
(
1998
).
30.
H.
Prophet
and
D. R.
Stull
, United States, and National Bureau of Standards, JANAF thermochemical tables (U.S. Dept. of Commerce, National Bureau of Standards,
1971
).
31.
A.
Ern
and
V.
Giovangigli
, “
EGLIB: A general-purpose fortran library for multicomponent transport property evaluation
,” CERMICS,
2004
, http://www.cmap.polytechnique.fr/www.eglib/.
32.
R.
Boukharfane
, “
Contribution à la simulation numérique d'écoulements turbulents compressibles canoniques
,” Ph.D. thesis (
École Nationale Supérieure de Mécanique
,
2018
).
33.
P. J. M.
Ferrer
,
R.
Buttay
,
G.
Lehnasch
, and
A.
Mura
, “
A detailed verification procedure for compressible reactive multicomponent Navier–Stokes solvers
,”
Comput. Fluids
89
,
88
110
(
2014
).
34.
R.
Boukharfane
,
P. J. M.
Ferrer
,
A.
Mura
, and
V.
Giovangigli
, “
On the role of bulk viscosity in compressible reactive shear layer developments
,”
Eur. J. Mech.-B
77
,
32
47
(
2019
).
35.
T.
Colonius
,
S. K.
Lele
, and
P.
Moin
, “
Sound generation in a mixing layer
,”
J. Fluid Mech.
330
,
375
409
(
1997
).
36.
N. N.
Smirnov
,
V. B.
Betelin
,
V. F.
Nikitin
,
L. I.
Stamov
, and
D. I.
Altoukhov
, “
Accumulation of errors in numerical simulations of chemically reacting gas dynamics
,”
Acta Astronaut.
117
,
338
355
(
2015
).
37.
C.
Pantano
and
S.
Sarkar
, “
A study of compressibility effects in the high-speed turbulent shear layer using direct simulation
,”
J. Fluid Mech.
451
,
329
(
2002
).
38.
J.
Fröhlich
,
C. P.
Mellen
,
W.
Rodi
,
L.
Temmerman
, and
M. A.
Leschziner
, “
Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions
,”
J. Fluid Mech.
526
,
19
(
2005
).
39.
Y.
Dong
,
Y.
Yan
, and
C.
Liu
, “
New visualization method for vortex structure in turbulence by lambda2 and vortex filaments
,”
Appl. Math. Modell.
40
,
500
509
(
2016
).
40.
N. D.
Sandham
, “
A numerical investigation of the compressible mixing layer
,” Ph.D. thesis (
Stanford University
,
1989
).
41.
M. M.
Rogers
and
R. D.
Moser
, “
Direct simulation of a self-similar turbulent mixing layer
,”
Phys. Fluids
6
,
903
923
(
1994
).
42.
A.
Attili
and
F.
Bisetti
, “
Statistics and scaling of turbulence in a spatially developing mixing layer at
Reλ=250,”
Phys. Fluids
24
,
035109
(
2012
).
43.
G. L.
Brown
and
A.
Roshko
, “
On density effects and large structure in turbulent mixing layers
,”
J. Fluid Mech.
64
,
775
816
(
1974
).
44.
J. R.
Debisschop
,
O.
Chambers
, and
J. P.
Bonnet
, “
Velocity field characteristics in supersonic mixing layers
,”
Exp. Therm. Fluid Sci.
9
,
147
155
(
1994
).
45.
M. R.
Gruber
,
N. L.
Messersmith
, and
J. C.
Dutton
, “
Three-dimensional velocity field in a compressible mixing layer
,”
AIAA J.
31
,
2061
2067
(
1993
).
46.
A. W.
Vreman
,
N. D.
Sandham
, and
K. H.
Luo
, “
Compressible mixing layer growth rate and turbulence characteristics
,”
J. Fluid Mech.
320
,
235
258
(
1996
).
47.
J. L.
Lumley
and
G. R.
Newman
, “
The return to isotropy of homogeneous turbulence
,”
J. Fluid Mech.
82
,
161
178
(
1977
).
48.
L. J.
Lumley
, “
Computational modeling of turbulent flows
,” in
Advances in Applied Mechanics
(
Elsevier
,
1979
), Vol.
18
, pp.
123
176
.
49.
A. J.
Simonsen
and
P.-Å.
Krogstad
, “
Turbulent stress invariant analysis: Clarification of existing terminology
,”
Phys. Fluids
17
,
088103
(
2005
).
50.
I.
Mahle
,
H.
Foysi
,
S.
Sarkar
, and
R.
Friedrich
, “
On the turbulence structure in inert and reacting compressible mixing layers
,”
J. Fluid Mech.
593
,
171
180
(
2007
).
51.
P. J. M.
Ferrer
,
G.
Lehnasch
, and
A.
Mura
, “
Compressibility and heat release effects in high-speed reactive mixing layers I.: Growth rates and turbulence characteristics
,”
Combust. Flame
180
,
284
303
(
2017
).
52.
H.
Tennekes
and
J. L.
Lumley
,
A First Course in Turbulence
(
MIT Press
,
2018
).
53.
S.
Stanley
and
S.
Sarkar
, “
Simulations of spatially developing two-dimensional shear layers and jets
,”
Theor. Comput. Fluid Dyn.
9
,
121
147
(
1997
).
54.
S.
Fu
and
Q.
Li
, “
Numerical simulation of compressible mixing layers
,”
Int. J. Heat Fluid Flow
27
,
895
901
(
2006
).
You do not currently have access to this content.