The vorticity dynamics of turbulent, buoyant, and pure plumes released into the quiescent ambience has been investigated using large-eddy simulations with plume Reynolds number in the range of 6 × 107 to 108. The plume is generated by a circular heat source and sustained by buoyancy forcings generated by heating. As the starting plume rises vertically, it expands radially, entraining ambient fluid into the plume and two distinct stages of evolution are evident. During stage one (initial stage), in the near-source region the plume is accelerating characterized by developing turbulence. During the next stage (mixing stage), the plume is significantly altered by turbulence resulting in significant entrainment and expansion in the radial direction. As turbulent intensities decay during the mixing stage, the enstrophy decays in an exponential manner with height with an exponent of −7/4. The turbulent kinetic energy budget analysis reveals—baroclinic torque, stretching, and compression—as the three dominant mechanisms for the plume growth. The probability distribution function (PDF) of vorticity shows that vorticity is mainly aligned along the transverse direction near the source and slowly reaches to a quasi-isotropy state downstream. Turbulence spectra demonstrate the presence of a buoyancy-regime with a −3 spectral slope. The PDF of vorticity further shows extreme dominance of the strain rate rather than rotation within the plume. Consistent with studies in the literature, the vorticity fluctuations align with the intermediate eigen-vector of strain-rate tensor.

1.
R. A.
Kahn
,
Y.
Chen
,
D. L.
Nelson
,
F.-Y.
Leung
,
Q.
Li
,
D. J.
Diner
, and
J. A.
Logan
, “
Wildfire smoke injection heights: Two perspectives from space
,”
Geophys. Res. Lett.
35
,
L04809
, (
2008
).
2.
R. R.
Burton
,
M. J.
Woodhouse
,
A. M.
Gadian
, and
S. D.
Mobbs
, “
The use of a numerical weather prediction model to simulate near-field volcanic plumes
,”
Atmosphere
11
,
594
(
2020
).
3.
S. R.
Bhimireddy
and
K.
Bhaganagar
, “
Short-term passive tracer plume dispersion in convective boundary layer using a high-resolution WRF-ARW model
,”
Atmos. Pollut. Res.
9
,
901
911
(
2018
).
4.
K.
Bhaganagar
and
S. R.
Bhimireddy
, “
Assessment of the plume dispersion due to chemical attack on April 4, 2017, in Syria
,”
Nat. Hazards
88
,
1893
1901
(
2017
).
5.
K.
Bhaganagar
and
S.
Bhimireddy
, “
Local atmospheric factors that enhance air-borne dispersion of coronavirus-high-fidelity numerical simulation of COVID19 case study in real-time
,”
Environ. Res.
191
,
110170
(
2020
).
6.
B. R.
Morton
,
G. I.
Taylor
, and
J. S.
Turner
, “
Turbulent gravitational convection from maintained and instantaneous sources
,”
Proc. R. Soc. London. A.
234
,
1
23
(
1956
).
7.
B. R.
Morton
, “
Forced plumes
,”
J. Fluid Mech.
5
,
151
163
(
1959
).
8.
B. R.
Morton
and
J.
Middleton
, “
Scale diagrams for forced plumes
,”
J. Fluid Mech.
58
,
165
176
(
1973
).
9.
G. R.
Hunt
and
N. B.
Kaye
, “
Lazy plumes
,”
J. Fluid Mech.
533
,
329
338
(
2005
).
10.
N.
Kaye
and
G.
Hunt
, “
An experimental study of large area source turbulent plumes
,”
Int. J. Heat Fluid Flow
30
,
1099
1105
(
2009
).
11.
N.
Bhamidipati
and
A. W.
Woods
, “
On the dynamics of starting plumes
,”
J. Fluid Mech.
833
,
R2
(
2017
).
12.
R. M.
Loganathan
and
G. R.
Hunt
, “
Analytical solutions for flow induced by a vertically distributed turbulent plume
,”
Environ. Fluid Mech.
19
,
801
818
(
2019
).
13.
F. C.
Martins
,
J. M. C.
Pereira
, and
J. C. F.
Pereira
, “
Vorticity transport in laminar steady rotating plumes
,”
Phys. Fluids
32
,
043604
(
2020
).
14.
X.
Zhou
,
K. H.
Luo
, and
J. R.
Williams
, “
Large eddy simulation of a turbulent forced plume
,”
Eur J. Mech. B/Fluids.
20
,
233
250
(
2001
).
15.
G.
Maragkos
,
P.
Rauwoens
,
Y.
Wang
, and
B.
Merci
, “
Large eddy simulations of the flow in the near-field region of a turbulent buoyant helium plume
,”
Flow Turbul. Combust.
90
,
511
(
2013
).
16.
K. K.
Bharadwaj
and
D.
Das
, “
Global instability analysis and experiments on buoyant plumes
,”
J. Fluid Mech.
832
,
97
145
(
2017
).
17.
R. V. K.
Chakravarthy
,
L.
Lesshafft
, and
P.
Huerre
, “
Global stability of buoyant jets and plumes
,”
J. Fluid Mech.
835
,
654
673
(
2018
).
18.
K.
Bhaganagar
and
S. R.
Bhimireddy
, “
Numerical investigation of starting turbulent buoyant plumes released in neutral atmosphere
,”
J. Fluid Mech.
900
,
A32
(
2020
).
19.
N. T.
Wimer
,
C.
Lapointe
,
J. D.
Christopher
,
S. P.
Nigam
,
T. R. S.
Hayden
,
A.
Upadhye
,
M.
Strobel
,
G. B.
Rieker
, and
P. E.
Hamlington
, “
Scaling of the puffing Strouhal number for buoyant jets and plumes
,”
J. Fluid Mech.
895
,
A26
(
2020
).
20.
N. T.
Wimer
,
M. S.
Day
,
C.
Lapointe
,
M. A.
Meehan
,
A. S.
Makowiecki
,
J. F.
Glusman
,
J. W.
Daily
,
G. B.
Rieker
, and
P. E.
Hamlington
, “
Numerical simulations of buoyancy-driven flows using adaptive mesh refinement: Structure and dynamics of a large-scale helium plume
,”
Theoret. Comput. Fluid Dyn.
35
,
61
91
(
2021
).
21.
M.
Arreola Amaya
and
C. B.
Clements
, “
Evolution of plume core structures and turbulence during a wildland fire experiment
,”
Atmosphere
11
,
842
(
2020
).
22.
D. A.
Donzis
,
P. K.
Yeung
, and
K. R.
Sreenivasan
, “
Dissipation and enstrophy in isotropic turbulence: Resolution effects and scaling in direct numerical simulations
,”
Phys. Fluids
20
,
045108
(
2008
).
23.
B.
Kadoch
,
K.
Iyer
,
D.
Donzis
,
K.
Schneider
,
M.
Farge
, and
P. K.
Yeung
, “
On the role of vortical structures for turbulent mixing using direct numerical simulation and wavelet-based coherent vorticity extraction
,”
J. Turbul.
12
,
N20
(
2011
).
24.
P. K.
Yeung
,
D. A.
Donzis
, and
K. R.
Sreenivasan
, “
Dissipation, enstrophy and pressure statistics in turbulence simulations at high Reynolds numbers
,”
J. Fluid Mech.
700
,
5
15
(
2012
).
25.
S.
Kida
and
S. A.
Orszag
, “
Enstrophy budget in decaying compressible turbulence
,”
J. Sci. Comput.
5
,
1
34
(
1990
).
26.
S.
Jagannathan
and
D. A.
Donzis
, “
Reynolds and mach number scaling in solenoidally-forced compressible turbulence using high-resolution direct numerical simulations
,”
J. Fluid Mech.
789
,
669
707
(
2016
).
27.
N. K.-R.
Kevlahan
, “
The vorticity jump across a shock in a non-uniform flow
,”
J. Fluid Mech.
341
,
371
384
(
1997
).
28.
K.
Sinha
, “
Evolution of enstrophy in shock/homogeneous turbulence interaction
,”
J. Fluid Mech.
707
,
74
110
(
2012
).
29.
J.
Larsson
,
I.
Bermejo-Moreno
, and
S. K.
Lele
, “
Reynolds- and Mach-number effects in canonical shock-turbulence interaction
,”
J. Fluid Mech.
717
,
293
321
(
2013
).
30.
X.
Gao
,
I.
Bermejo-Moreno
, and
J.
Larsson
, “
Parametric numerical study of passive scalar mixing in shock turbulence interaction
,”
J. Fluid Mech.
895
,
A21
(
2020
).
31.
S. R.
Bhimireddy
and
K.
Bhaganagar
, “
Implementing a new formulation in WRF-LES for Buoyant Plume Simulations: bPlume-WRF-LES model
,”
Mon. Weather Rev.
149
,
2299
2319
(
2021
).
32.
J.
Ai
,
A. W.-K.
Law
, and
S. C. M.
Yu
, “
On Boussinesq and non-Boussinesq starting forced plumes
,”
J. Fluid Mech.
558
,
357
386
(
2006
).
33.
O. N.
Boratav
,
S. E.
Elghobashi
, and
R.
Zhong
, “
On the alignment of strain, vorticity and scalar gradient in turbulent, buoyant, nonpremixed flames
,”
Phys. Fluids
10
,
2260
2267
(
1998
).
34.
W. T.
Ashurst
,
A. R.
Kerstein
,
R. M.
Kerr
, and
C. H.
Gibson
, “
Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence
,”
Phys. Fluids
30
,
2343
2353
(
1987
).
35.
R. M.
Kerr
, “
Histograms of helicity and strain in numerical turbulence
,”
Phys. Rev. Lett.
59
,
783
786
(
1987
).
36.
G.
Shur
, “
Experimental studies of the energy spectrum of atmospheric turbulence
,”
Tr. Tsent. Aerolog. Observ.
43
,
79
90
(
1962
).
37.
J. L.
Lumley
, “
The spectrum of nearly inertial turbulence in a stably stratified fluid
,”
J. Atmos. Sci.
21
,
99
102
(
1964
).
38.
M.
Carnevale
,
G. F.
Briscolini
, and
P.
Orlandi
, “
Buoyancy- to inertial-range transition in forced stratified turbulence
,”
J. Fluid Mech.
427
,
205
239
(
2001
).
39.
J.-R.
Alisse
and
C.
Sidi
, “
Experimental probability density functions of small-scale fluctuations in the stably stratified atmosphere
,”
J. Fluid Mech.
402
,
137
162
(
2000
).
40.
J.
Wang
,
M.
Wan
,
S.
Chen
,
C.
Xie
, and
S.
Chen
, “
Effect of shock waves on the statistics and scaling in compressible isotropic turbulence
,”
Phys. Rev. E
97
,
043108
(
2018
).
You do not currently have access to this content.