Large-eddy simulations (LES) of a single-phase, turbulent flow in a 90° pipe bend are performed at three Reynolds numbers (5300, 27 000, and 45 000) to investigate the correlation between secondary flow motion and wall shear stresses, which is suspected to be a potential mechanism responsible for material erosion. The isothermal flows are validated against available experimental and numerical data first. The snapshot proper orthogonal decomposition (POD) is applied for the medium and high Reynolds number flows to identify the secondary flow motions and the oscillation of the Dean vortices that are found to cause swirl-switching. Distinguished frequencies of the POD time coefficients at Strouhal numbers of 0.25 and 0.28 are identified for Reynolds numbers at 27 000 and 45 000, respectively. Moreover, shear stress on the pipe wall and the associated power spectral density are obtained and shown to have the same oscillating frequency as the swirl-switching.

1.
J. R.
Finn
and
Ö. N.
Doğan
, “
Analyzing the potential for erosion in a supercritical CO2 turbine nozzle with large eddy simulation
,” in
Turbo Expo: Power for Land, Sea, and Air
(
American Society of Mechanical Engineers
,
2019
), Vol.
58585
, p.
V02DT47A019
.
2.
I.
Finnie
, “
Erosion of surfaces by solid particles
,”
Wear
3
,
87
103
(
1960
).
3.
D.
Fleming
,
A.
Kruizenga
,
J.
Pasch
,
T.
Conboy
, and
M.
Carlson
, “
Corrosion and erosion behavior in supercritical CO2 power cycles
,” in
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
(
American Society of Mechanical Engineers
,
2014
), p.
V03BT36A002
.
4.
D.
Fleming
and
A.
Kruizenga
, “
Identified corrosion and erosion mechanisms in sCO2 Brayton cycles
,” Report No. SAND2014-15546 (
Sandia National Laboratories
,
2014
).
5.
S.
Taguchi
,
Y.
Ikarashi
,
T.
Yamagata
,
N.
Fujisawa
, and
F.
Inada
, “
Mass and momentum transfer characteristics in 90° elbow under high Reynolds number
,”
Int. Commun. Heat Mass Transfer
90
,
103
110
(
2018
).
6.
L.
Zeng
,
G.
Chen
, and
H.
Chen
, “
Comparative study on flow-accelerated corrosion and erosion–corrosion at a 90° carbon steel bend
,”
Materials
13
,
1780
(
2020
).
7.
L. E.
Sanchez-Caldera
,
P.
Griffith
, and
E.
Rabinowicz
, “
The mechanism of corrosion–erosion in steam extraction lines of power stations
,”
J. Eng. Gas Turbines Power
110
,
180
184
(
1988
).
8.
K. M.
HWANG
,
T. E.
JIN
, and
K. H.
KIM
, “
Identification of the relationship between local velocity components and local wall thinning inside carbon steel piping
,”
J. Nucl. Sci. Technol.
46
,
469
478
(
2009
).
9.
W. H.
Ahmed
, “
Evaluation of the proximity effect on flow-accelerated corrosion
,”
Ann. Nucl. Energy
37
,
598
605
(
2010
).
10.
M.
El-Gammal
,
H.
Mazhar
,
J.
Cotton
,
C.
Shefski
,
J.
Pietralik
, and
C.
Ching
, “
The hydrodynamic effects of single-phase flow on flow accelerated corrosion in a 90-degree elbow
,”
Nucl. Eng. Des.
240
,
1589
1598
(
2010
).
11.
J. M.
Pietralik
and
C. S.
Schefski
, “
Flow and mass transfer in bends under flow-accelerated corrosion wall thinning conditions
,”
J. Eng. Gas Turbines Power
133
,
012902
(
2011
).
12.
T.
Takano
,
Y.
Ikarashi
,
K.
Uchiyama
,
T.
Yamagata
, and
N.
Fujisawa
, “
Influence of swirling flow on mass and momentum transfer downstream of a pipe with elbow and orifice
,”
Int. J. Heat Mass Transfer
92
,
394
402
(
2016
).
13.
Y.
Utanohara
and
M.
Murase
, “
Influence of flow velocity and temperature on flow accelerated corrosion rate at an elbow pipe
,”
Nucl. Eng. Des.
342
,
20
28
(
2019
).
14.
D. H.
Lister
and
L. C.
Lang
, “
A mechanistic model for predicting flow-assisted and general corrosion of carbon steel in reactor primary coolants
,” Proc. Int. Conf. Water Chem. Nucl. Reactor Systems. Avignon, France, 2002 (September
2002
), available at https://scholar.google.com/scholar_lookup?title=A%20Mechanistic%20Model%20for%20Predicting%20Flow-assisted%20and%20General%20Corrosion%20of%20Carbon%20Steel%20in%20Reactor%20Primary%20Coolants&author=DH.%20Lister&author=L.%20Lang&publication_year=2002.
15.
S.
Berger
,
L.
Talbot
, and
L.
Yao
, “
Flow in curved pipes
,”
Annu. Rev. Fluid Mech.
15
,
461
512
(
1983
).
16.
F.
Rütten
,
W.
Schröder
, and
M.
Meinke
, “
Large-eddy simulation of low frequency oscillations of the Dean vortices in turbulent pipe bend flows
,”
Phys. Fluids
17
,
035107
(
2005
).
17.
L. H.
Hellström
,
M. B.
Zlatinov
,
G.
Cao
, and
A. J.
Smits
, “
Turbulent pipe flow downstream of a bend
,”
J. Fluid Mech.
735
,
R7
(
2013
).
18.
M. J.
Tunstall
and
J. K.
Harvey
, “
On the effect of a sharp bend in a fully developed turbulent pipe-flow
,”
J. Fluid Mech.
34
,
595
608
(
1968
).
19.
C.
Carlsson
,
E.
Alenius
, and
L.
Fuchs
, “
Swirl switching in turbulent flow through 90°pipe bends
,”
Phys. Fluids
27
,
085112
(
2015
).
20.
L.
Hufnagel
,
J.
Canton
,
R.
Örlü
,
O.
Marin
,
E.
Merzari
, and
P.
Schlatter
, “
The three-dimensional structure of swirl-switching in bent pipe flow
,”
J. Fluid Mech.
835
,
86
101
(
2018
).
21.
Y.
Ikarashi
,
T.
Yamagata
,
F.
Yamagishi
, and
N.
Fujisawa
, “
Unsteady turbulence structure in and downstream of a short elbow at post-critical Reynolds numbers
,”
Nucl. Eng. Des.
364
,
110649
(
2020
).
22.
K.
Mahesh
,
G.
Constantinescu
,
S.
Apte
,
G.
Iaccarino
,
F.
Ham
, and
P.
Moin
, “
Large-eddy simulation of reacting turbulent flows in complex geometries
,”
J. Appl. Mech.
73
,
374
(
2006
).
23.
P.
Moin
and
S.
Apte
, “
Large-eddy simulation of realistic gas turbine-combustors
,”
AIAA J.
44
,
698
708
(
2006
).
24.
M.
Germano
,
U.
Piomelli
,
P.
Moin
, and
W.
Cabot
, “
A dynamic subgrid-scale eddy viscosity model
,”
Phys. Fluids A: Fluid Dyn.
3
,
1760
(
1991
).
25.
K.
Mahesh
,
G.
Constantinescu
, and
P.
Moin
, “
A numerical method for large-eddy simulation in complex geometries
,”
J. Comput. Phys.
197
,
215
240
(
2004
).
26.
S.
Apte
,
K.
Mahesh
,
P.
Moin
, and
J.
Oefelein
, “
Large-eddy simulation of swirling particle-laden flows in a coaxial-jet combustor
,”
Int. J. Multiphase Flow
29
,
1311
1331
(
2003
).
27.
S.
Apte
,
O.
Dogan
, and
C.
Ghodke
, “
Numerical investigation of potential erosion mechanisms in turbulent flow of sCO2 pipe bends
,” in
5th International Symposium—Supercritical CO₂ Power Cycles
(
2016
).
28.
X.
He
,
S. V.
Apte
, and
O. N.
Dogan
, “
Numerical simulations of supercritical CO2 flow through pipe bends: Identification of a potential cause of material erosion
,” in
6th International sCO₂ Power Cycles Symposium
(
2018
).
29.
E.
Shams
,
J.
Finn
, and
S.
Apte
, “
A numerical scheme for Euler-Lagrange simulation of bubbly flows in complex systems
,”
Int. J. Numer. Methods Fluids
67
,
1865
1898
(
2011
).
30.
E.
Shams
and
S. V.
Apte
, “
Prediction of small-scale cavitation in a high speed flow over an open cavity using large-eddy simulation
,”
J. Fluids Eng.
132
,
111301
(
2010
).
31.
C.
Pierce
and
P.
Moin
, “
Large eddy simulation of a confined coaxial jet with swirl and heat release
,”
AIAA Paper No. 2892
(
1998
).
32.
C.
Chin
,
H.
Ng
,
H.
Blackburn
,
J.
Monty
, and
A.
Ooi
, “
Turbulent pipe flow at re 1000: A comparison of wall-resolved large-eddy simulation, direct numerical simulation and hot-wire experiment
,”
Comput. Fluids
122
,
26
33
(
2015
).
33.
F.
Unger
, “
Numerische Simulation Turbulenter Rohrströmungen
,” Ph.D. thesis (
Lehrstuhl für Fluidmechanik, Technische Universität München
,
1994
).
34.
W.
Schröder
,
M.
Meinke
, and
A.
Schvorak
, “
Large-eddy simulations of accelerated pipe flow
,”
Comput. Fluid Dyn. J.
(submitted).
35.
C.
Brücker
, “
A time-recording DPIV-study of the swirl switching effect in a 90° bend flow
,” in
Proceedings of the Eight International Symposium on Flow Visualization
,
Sorrento, Italy
(
1998
).
36.
A. K.
Vester
,
R.
Örlü
, and
P. H.
Alfredsson
, “
Turbulent flows in curved pipes: Recent advances in experiments and simulations
,”
Appl. Mech. Rev.
68
,
050802
(
2016
).
37.
F.
Rütten
,
M.
Meinke
, and
W.
Schröder
, “
Large-eddy simulations of 90°pipe bend flows
,”
J. Turbul.
2
,
N3
(
2001
).
38.
K.
Sudo
,
M.
Sumida
, and
H.
Hibara
, “
Experimental investigation on turbulent flow through a circular-sectioned 180 degrees bend
,”
Exp. Fluids
28
,
51
57
(
2000
).
39.
A. K.
Vester
,
R.
Örlü
, and
P. H.
Alfredsson
, “
POD analysis of the turbulent flow downstream a mild and sharp bend
,”
Exp. Fluids
56
,
15
(
2015
).
40.
K.
Taira
,
S. L.
Brunton
,
S. T. M.
Dawson
,
C. W.
Rowley
,
T.
Colonius
,
B. J.
McKeon
,
O. T.
Schmidt
,
S.
Gordeyev
,
V.
Theofilis
, and
L. S.
Ukeiley
, “
Modal analysis of fluid flows: An overview
,”
AIAA J.
55
,
4013
4041
(
2017
).
41.
G. R.
Holcomb
,
C.
Carney
, and
N.
Doğan
, “
Oxidation of alloys for energy applications in supercritical CO2 and H2O
,”
Corros. Sci.
109
,
22
35
(
2016
).
42.
M.
Schütze
,
P.
Tortorelli
, and
I.
Wright
, “
Development of a comprehensive oxide scale failure diagram
,”
Oxid. Met.
73
,
389
418
(
2010
).
You do not currently have access to this content.