The motion of bubbles and drops through tubes in gravity- and pressure-driven flows is intensively studied numerically and experimentally. The Bretherton asymptotic expressions predict axisymmetric bubbles movement at low velocities. They describe the dependence of capillary (Ca) and Bond (Bo) numbers on the system parameters but are valid only in the ranges 0 < Ca < 0.005 and 0.84 < Bo < 1.04. This paper investigates the gravity-induced motion of bubbles with free or tangentially immobile interfaces in pressure-driven flows. We derive the exact solution of the hydrodynamic problem using the lubrication approximation in the zero- and first-order approximations for pressure and fluid velocity. The respective boundary value problem for the bubble shape is solved numerically to obtain the wetting film thickness, h, between the bubble and the capillary and the dependence of the capillary numbers on the flow parameters and magnitude of gravity. The proposed model expands the applicable solution ranges by 400 and 38 times, respectively (0 < Ca < 2 and 0 < Bo < 7.5), validated with available experimental data. The model's simplicity and transparency open the possibility to generalize this approach including determining new physicochemical properties of liquids and interfaces.

1.
T. Q. M. D.
Tran
,
M. A.
Ahmad
,
P.
Neogy
, and
B.
Bai
, “
A single pore model for displacement of heavy crude oil with carbon dioxide
,”
SPE J.
21
,
864
(
2016
).
2.
P.
Grassia
, “
Motion of an oil droplet through a capillary with charged surfaces
,”
J. Fluid Mech.
866
,
721
(
2019
).
3.
T.
Majeed
,
M. S.
Kamal
,
X.
Zhou
, and
T.
Solling
, “
A review of foam stabilizers for enhanced oil recovery
,”
Energy Fuels
35
,
5594
(
2021
).
4.
D.
Halpern
and
T. W.
Secomb
, “
The squeezing of red blood cells through capillaries with near-minimal diameters
,”
J. Fluid Mech.
203
,
381
(
1989
).
5.
T.
Savin
,
M. M.
Bandi
, and
L.
Mahadevan
, “
Pressure-driven occlusive flow of a confined red blood cell
,”
Soft Matter
12
,
562
(
2016
).
6.
D. P.
Gaver
 III
,
D.
Halpern
,
O. E.
Jensen
, and
J. B.
Grotberg
, “
The steady motion of a semi-infinite bubble through a flexible-walled channel
,”
J. Fluid Mech.
319
,
25
(
1996
).
7.
M.
Heil
, “
The Bretherton problem in elastic-walled channels: Finite Reynolds number effects
,” in
IUTAM Symposium on Free Surface Flows. Fluid Mechanics and Its Application
, edited by
A. C.
King
and
Y. D.
Shikhmurzaev
(
Springer
,
Dordrecht
,
1996
),
Vol. 62
, p.
113
.
8.
C. N.
Baroud
,
S.
Tsikata
, and
M.
Heil
, “
The propagation of low viscosity fingers into fluid-filled branching network
,”
J. Fluid Mech.
546
,
285
(
2005
).
9.
J.
Stark
and
M.
Manga
, “
The motion of long bubbles in a network of tubes
,”
Transp. Porous Media
40
,
201
(
2000
).
10.
C.
Clanet
,
P.
Héraud
, and
G.
Searby
, “
On the motion of bubbles in vertical tubes of arbitrary cross-sections: Some complements to the Dimitrescu-Taylor problem
,”
J. Fluid Mech.
519
,
359
(
2004
).
11.
D.
Picchi
,
A.
Ullmann
,
N.
Brauner
, and
P.
Poesio
, “
Motion of a confined bubble in a shear-thinning liquid
,”
J. Fluid Mech.
918
,
A7
(
2021
).
12.
C.
Chao
,
X.
Jin
, and
X.
Fan
, “
Evolution of thin-liquid films surrounding bubbles in microfluidics and their impact on the pressure drop and fluid movement
,”
Langmuir
36
,
15102
(
2020
).
13.
M. T.
Kreutzer
,
F.
Kapteijn
,
J. A.
Moulijn
,
C. R.
Kleijn
, and
J. J.
Heiszwolf
, “
Inertial and interfacial effects on pressure drop of Taylor flow in capillaries
,”
AIChE J.
51
,
2428
(
2005
).
14.
B.
Wang
,
B.
Ke
,
B.
Chen
,
R.
Li
, and
R.
Tian
, “
A technical review on research progress on thin liquid film thickness measurements
,”
Exp. Comput. Multiphase Flow
2
,
199
(
2020
).
15.
A. H.
Gibson
, “
On the motion of long air-bubbles in a vertical tube
,”
Phil. Mag.
26
,
952
(
1913
).
16.
B. A. G.
Barr
, “
The air-bubble viscometer
,”
Phil. Mag.
1
,
395
(
1926
).
17.
C.
Lamstaes
and
J.
Eggers
, “
Arrested bubble rise in a narrow tube
,”
J. Stat. Phys.
167
,
656
(
2017
).
18.
D. T.
Dumitrescu
, “
Strömung an einer Luftblase im senkrechten, Rohr
,”
Z. Angew. Math. Mech.
23
,
139
(
1943
).
19.
R. M.
Davies
and
G.
Taylor
, “
The mechanics of large bubbles rising through extended liquids and through liquids in tubes
,”
Proc. R. Soc. Lond. A
200
,
375
(
1950
).
20.
T. Z.
Harmathy
, “
Velocity of large drops and bubbles in media of infinite or restricted extent
,”
AIChE J.
6
,
281
(
1960
).
21.
H. L.
Goldsmith
and
S. G.
Mason
, “
The movement of single large bubbles in closed vertical tubes
,”
J. Fluid Mech.
14
,
42
(
1962
).
22.
E. T.
White
and
R. H.
Beardmore
, “
The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes
,”
Chem. Eng. Sci.
17
,
351
(
1962
).
23.
R.
van Hout
,
A.
Gulitski
,
D.
Barnea
, and
L.
Shemer
, “
Experimental investigation of the velocity field induced by a Taylor bubble rising in stagnant water
,”
Int. J. Multiphase Flow
28
,
579
(
2002
).
24.
W.
Dhaouadi
and
J. M.
Kolinski
, “
Bretherton's buoyant bubble
,”
Phys. Rev. Fluids
4
,
123601
(
2019
).
25.
K. H.
Bendiksen
, “
On the motion of long bubbles in vertical tubes
,”
Int. J. Multiphase Flow
11
,
797
(
1985
).
26.
Z.-S.
Mao
and
A. E.
Dukler
, “
The motion of Taylor bubbles in vertical tubes—II: Experimental data and simulations for laminar and turbulent flow
,”
Chem. Eng. Sci.
46
,
2055
(
1991
).
27.
J. D.
Bugg
,
K.
Mack
, and
K. S.
Rezkallah
, “
A numerical model of Taylor bubbles rising through stagnant liquids in vertical tubes
,”
Int. J. Multiphase Flow
24
,
271
(
1998
).
28.
J. D.
Bugg
and
G. A.
Saad
, “
The velocity field around a Taylor bubble rising in a stagnant viscous fluid: Numerical and experimental results
,”
Int. J. Multiphase Flow
28
,
791
(
2002
).
29.
R.
Azadi
and
D. S.
Nobes
, “
Local flow dynamics in the motion of slug bubbles in a flowing mini square channels
,”
Int. J. Heat Mass Transfer
178
,
121588
(
2021
).
30.
Z.
Li
,
L.
Wang
,
J.
Li
, and
H.
Chen
, “
Drainage and lubrication film around stuck bubbles in vertical capillaries
,”
Appl. Phys. Lett.
115
,
111601
(
2019
).
31.
A. O.
Morgado
,
J. M.
Miranda
,
J. D. P.
Araújo
, and
J. B. L. M.
Campos
, “
Review on vertical gas-liquid slug flow
,”
Int. J. Multiphase Flow
85
,
348
(
2016
).
32.
F. P.
Bretherton
, “
The motion of long bubbles in tubes
,”
J. Fluid Mech.
10
,
166
(
1961
).
33.
F.
Fairbrother
and
A. E.
Stubbs
, “
Studies in electro-endosmosis. Part IV. The ‘bubble-tube’ method of measurement
,”
J. Chem. Soc.
1
,
527
(
1935
).
34.
G. I.
Taylor
, “
Deposition of a viscous fluid on the wall of a tube
,”
J. Fluid Mech.
10
,
161
(
1961
).
35.
J.-D.
Chen
, “
Measuring the film thickness surrounding a bubble inside a capillary
,”
J. Colloid Interface Sci.
109
,
341
(
1986
).
36.
L. W.
Schwartz
,
H. M.
Princen
, and
A. D.
Kiss
, “
On the motion of bubbles in capillary tubes
,”
J. Fluid Mech.
172
,
259
(
1986
).
37.
P.
Aussillous
and
D.
Quéré
, “
Quick deposition of a fluid on the wall of a tube
,”
Phys. Fluids
12
,
2367
(
2000
).
38.
Y.
Han
and
N.
Shikazono
, “
Measurement of the liquid film thickness in micro tube slug flow
,”
Int. J. Heat Fluid Flow
30
,
842
(
2009
).
39.
I.
Beresnev
,
W.
Gaul
, and
R. D.
Vigil
, “
Thickness of residual wetting film in liquid-liquid displacement
,”
Phys. Rev. E
84
,
026327
(
2011
).
40.
H.
Chen
,
Z.
Li
, and
J.
Li
, “
Thin-film profile around long bubbles in square microchannels measured by chromatic interference method
,”
Appl. Phys. Lett.
109
,
041604
(
2016
).
41.
M. H.
Matin
and
S.
Moghaddam
, “
Thin liquid film formation and evaporation mechanisms around elongated bubbles in rectangular cross-section microchannels
,”
Int. J. Heat Fluid Flow
163
,
120474
(
2020
).
42.
C.-E.
Wu
,
H.-W.
Du
,
J.
Qin
,
E.-Q.
Li
, and
P.
Gao
, “
Experiment on bubble formation through dynamic wetting transition in a square capillary
,”
AIP Adv.
11
,
075107
(
2021
).
43.
D. A.
Reinelt
and
P. G.
Saffman
, “
The penetration of a finger into a viscous fluid in a channel and tube
,”
SIAM J. Sci. Stat. Comput.
6
,
542
(
1985
).
44.
H.
Westborg
and
O.
Hassager
, “
Creeping motion of long bubbles and drops in capillary tubes
,”
J. Colloid Interface Sci.
133
,
135
(
1989
).
45.
H.
Wong
,
C. J.
Radke
, and
S.
Morris
, “
The motion of long bubbles in polygonal capillaries. Part 1. Thin films
,”
J. Fluid Mech.
292
,
71
(
1995
).
46.
H.
Wong
,
C. J.
Radke
, and
S.
Morris
, “
The motion of long bubbles in polygonal capillaries. Part 2. Drag, fluid pressure and fluid flow
,”
J. Fluid Mech.
292
,
95
(
1995
).
47.
M. D.
Giavedoni
and
F. A.
Saita
, “
The axisymmetric and plane cases of a gas phase steadily displacing a Newtonian liquid—A simultaneous solution of the governing equations
,”
Phys. Fluids
9
,
2420
(
1997
).
48.
M.
Heil
, “
Finite Reynolds number effects in the Bretherton problem
,”
Phys. Fluids
13
,
2517
(
2001
).
49.
A. L.
Hazel
and
M.
Heil
, “
The steady propagation of a semi-infinite bubble into a tube of elliptical or rectangular cross-section
,”
J. Fluid Mech.
470
,
91
(
2002
).
50.
S. R.
Hodges
,
O. E.
Jensen
, and
J. M.
Rallison
, “
The motion of a viscous drop through a cylindrical tube
,”
J. Fluid Mech.
501
,
279
(
2004
).
51.
J. Q.
Feng
, “
Steady axisymmetric motion of a small bubble in a tube with flowing liquid
,”
Proc. R. Soc. A
466
,
549
(
2010
).
52.
D. R.
Langewisch
and
J.
Buongiorno
, “
Prediction of film thickness, bubble velocity, and pressure drop for capillary slug flow using a CFD-generated database
,”
Int. J. Heat Fluid Flow
54
,
250
(
2015
).
53.
M.
Dzikowski
,
L. L.
aniewski-Wollk
, and
J.
Rokicki
, “
Single component multiphase lattice Boltzmann method for Taylor/Bretherton bubble train flow simulations
,”
Commun. Comput. Phys.
19
,
1042
(
2016
).
54.
M.
Magnini
and
O. K.
Matar
, “
Morphology of long gas bubbles propagation in square capillaries
,”
Int. J. Multiphase Flow
129
,
103353
(
2020
).
55.
E.
Klaseboer
,
R.
Gupta
, and
R.
Manica
, “
An extended Bretherton model for long Taylor bubbles at moderate capillary numbers
,”
Phys. Fluids
26
,
032107
(
2014
).
56.
G.
Balestra
,
L.
Zhu
, and
F.
Gallaire
, “
Viscous Taylor droplets in axisymmetric and planar tubes: From Bretherton's theory to empirical models
,”
Microfluid. Nanofluid.
22
,
67
(
2018
).
57.
G. I.
Hirasaki
and
J. B.
Lawson
, “
Mechanisms of foam flow in porous media: Apparent viscosity in smooth capillaries
,”
Soc. Pet. Eng. J.
25
,
176
(
1985
).
58.
N. D.
Denkov
,
V.
Subramanian
,
D.
Gurovich
, and
A.
Lips
, “
Wall slip and viscous dissipation in sheared foams: Effect of surface mobility
,”
Colloids Surf. A
263
,
129
(
2005
).
59.
G. M.
Ginley
and
C. J.
Radke
, “
Influence of soluble surfactants on the flow of long bubbles through a cylindrical capillary
,” in
Oil-Field Chemistry. Enhanced Recovery and Production Stimulation
, edited by
J. K.
Borchardt
and
T. F.
Yen
(
ACS Symp. Ser
.,
1989
), Vol.
396
, p.
480
.
60.
J.
Ratulowski
and
H.-C.
Chang
, “
Marangoni effects of trace impurities on the motion of long gas bubbles in capillaries
,”
J. Fluid Mech.
210
,
303
(
1990
).
61.
C.-W.
Park
, “
Influence of soluble surfactants on the motion of a finite bubble in a capillary tube
,”
Phys. Fluids A
4
,
2335
(
1992
).
62.
F.
Wassmuth
,
W. G.
Laidlaw
, and
D. A.
Coombe
, “
Calculation of interfacial flows and surfactant redistribution as a gas/liquid interface moves between two parallel plates
,”
Phys. Fluids A
5
,
1533
(
1993
).
63.
K. J.
Stebe
and
D.
Barthès-Biesel
, “
Marangoni effects of adsorption-desorption controlled surfactants on the leading end of an infinitely long bubble in a capillary
,”
J. Fluid Mech.
286
,
25
(
1995
).
64.
S. N.
Ghadiali
and
D. P.
Gaver
 III
, “
The influence of non-equilibrium surfactant dynamics on the flow of a semi-infinite bubble in a rigid cylindrical capillary tube
,”
J. Fluid Mech.
478
,
165
(
2003
).
65.
R. A.
Johnson
and
A.
Borhan
, “
Pressure-driven motion of surfactant-laden drops through cylindrical capillaries: Effect of surfactant solubility
,”
J. Colloid Interface Sci.
261
,
529
(
2003
).
66.
M.
Severino
,
A.
Giavedoni
, and
F. A.
Saita
, “
A gas phase displacing a liquid with soluble surfactants out of a small conduit: The plane case
,”
Phys. Fluids
15
,
2961
(
2003
).
67.
P.
Dapira
and
G.
Paşa
, “
The effect of surfactant on the motion of long bubbles in horizontal capillary tubes
,”
J. Stat. Mech.
2010
,
L02002
.
68.
T. N.
Swaminathan
,
K.
Mukundakrishnan
,
P. S.
Ayyaswamy
, and
D. M.
Eckmann
, “
Effect of a soluble surfactant on a finite-sized bubble motion in a blood vessel
,”
J. Fluid Mech.
642
,
509
(
2010
).
69.
U.
Olgac
and
M.
Muradoglu
, “
Effects of surfactant on liquid film thickness in the Bretherton problem
,”
Int. J. Multiphase Flow
48
,
58
(
2013
).
70.
Y.
Cui
and
N. R.
Gupta
, “
Numerical study of surfactant effects on the buoyancy-driven motion of a drop in a tube
,”
Chem. Eng. Sci.
144
,
48
(
2016
).
71.
N. H.
Hammoud
,
P. H.
Trinh
,
P. D.
Howell
, and
H. A.
Stone
, “
Influence of van der Waals forces on a bubble moving in a tube
,”
Phys. Rev. Fluids
2
,
063601
(
2017
).
72.
H. K.
Cho
,
A. D.
Nikolov
, and
D. T.
Wasan
, “
Step-wise velocity of an air bubble rising in a vertical tube filled with a liquid dispersion of nanoparticles
,”
Langmuir
33
,
2920
(
2017
).
73.
H. K.
Cho
,
A. D.
Nikolov
, and
D. T.
Wasan
, “
Estimation of structural film viscosity based on the bubble rise method in a nanofluid
,”
J. Colloid Interface Sci.
516
,
312
(
2018
).
74.
H. K.
Cho
,
A. D.
Nikolov
, and
D. T.
Wasan
, “
Prediction of the rate of the rise of an air bubble in nanofluids in a vertical tube
,”
J. Colloid Interface Sci.
525
,
115
(
2018
).
75.
C.
Madec
,
B.
Collin
,
J. J. S.
Jerome
, and
S.
Joubaud
, “
Puzzling bubble rise speed increase in dense granular suspensions
,”
Phys. Rev. Lett.
125
,
0780045
(
2020
).
76.
Y.-C.
Li
,
Y.-C.
Liao
,
T.-C.
Wen
, and
J.-H.
Wei
, “
Breakdown of the Bretherton law due to wall slippage
,”
J. Fluid Mech.
741
,
200
(
2014
).
77.
J.
Ratulowski
and
H.-C.
Chang
, “
Transport of gas bubbles in capillaries
,”
Phys. Fluids A
1
,
1642
(
1989
).
78.
W. B.
Kolb
and
R. L.
Cerro
, “
The motion of long bubbles in tubes of square cross section
,”
Phys. Fluids A
5
,
1549
(
1993
).
79.
Z.-S.
Mao
and
A. E.
Dukler
, “
The motion of Taylor bubbles in vertical tubes—I: A numerical simulation for the shape and rise velocity of Taylor bubbles in stagnant and flowing liquid
,”
J. Comput. Phys.
91
,
132
(
1990
).
80.
A.
Borhan
and
J.
Pallinti
, “
Pressure-driven motion of drops and bubbles through cylindrical capillaries: Effect of buoyancy
,”
Ind. Eng. Chem. Res.
37
,
3748
(
1998
).
81.
M.
Magnini
,
S.
Khodaparast
,
O. K.
Matar
,
H. A.
Stone
, and
J. R.
Thome
, “
Dynamics of long gas bubbles rising in a vertical tube in a cocurrent liquid flow
,”
Phys. Rev. Fluids
4
,
023601
(
2019
).
82.
Y. E.
Yu
,
M.
Magnini
,
L.
Zhu
,
S.
Shim
, and
H. A.
Stone
, “
Non-unique bubble dynamics in a vertical capillary with an external flow
,”
J. Fluid Mech.
911
,
A34
(
2021
).
83.
T.
Feagin
, “
A tenth-order Runge-Kutta method with error estimate
,” in
Proceedings of the IAENG Conference on Scientific Computing
(
Hong Kong
,
2007
).

Supplementary Material

You do not currently have access to this content.