Contrary to the popular inertial number-based rheology of dense granular flows, recent studies suggest a non-monotonic variation of the effective friction coefficient μ(I) with the inertial number I in plane shear flows. While the popular rheology assuming monotonic variation of μ(I) with I suggests existence of an upper limit of inclination angle for steady chute flows, the non-monotonic variation suggests the possibility of two different flow states for chute flows at a given inclination angle. In this work, we perform DEM simulations of chute flow of frictional inelastic disks and show that steady, fully developed flows are possible at inclinations much higher than those predicted from the monotonic μI rheology. We observe steady flows up to inertial number I2 and find non-monotonic variation of the effective friction at high inertial numbers for chute flow of disks. The flows at high inertial numbers exhibit a constant density bulk region supported on top of a very dilute energetic basal layer of particles. We show that, in addition to a modified effective friction law that accounts for the non-monotonic variation of μ(I) and the dilatancy law relating the solids fraction ϕ with I, the rheological description also needs to account for the stress anisotropy by means of a normal stress difference law. By accounting for the presence of the normal stress difference, we also establish that only a single flow state is possible at any given inclination angle despite the non-monotonic variation of the effective friction coefficient.

1.
Y. F. B.
Andereotti
and
O.
Pouliquen
,
Granular Media: Between Fluid and Solid
(
Cambridge University Press
,
Cambridge
,
2013
).
2.
G.
MiDi
, “
On dense granular flows
,”
Eur. Phys. J. E
14
,
341–365
(
2004
).
3.
F.
Da Cruz
,
S.
Emam
,
M.
Prochnow
,
J.-N.
Roux
, and
F.
Chevoir
, “
Rheophysics of dense granular materials: Discrete simulation of plane shear flows
,”
Phys. Rev. E
72
,
021309
(
2005
).
4.
P.
Jop
,
Y.
Forterre
, and
O.
Pouliquen
, “
A constitutive law for dense granular flows
,”
Nature
441
,
727
730
(
2006
).
5.
Y.
Forterre
and
O.
Pouliquen
, “
Flows of dense granular media
,”
Annu. Rev. Fluid Mech.
40
,
1
24
(
2008
).
6.
P.
Jop
,
Y.
Forterre
, and
O.
Pouliquen
, “
Crucial role of sidewalls in granular surface flows: Consequences for the rheology
,”
J. Fluid Mech.
541
,
167
192
(
2005
).
7.
Y.
Forterre
and
O.
Pouliquen
, “
Long-surface-wave instability in dense granular flows
,”
J. Fluid Mech.
486
,
21
50
(
2003
).
8.
L. E.
Silbert
,
D.
Ertaş
,
G. S.
Grest
,
T. C.
Halsey
,
D.
Levine
, and
S. J.
Plimpton
, “
Granular flow down an inclined plane: Bagnold scaling and rheology
,”
Phys. Rev. E
64
,
051302
(
2001
).
9.
S.
Mandal
and
D.
Khakhar
, “
Sidewall-friction-driven ordering transition in granular channel flows: Implications for granular rheology
,”
Phys. Rev. E
96
,
050901
(
2017
).
10.
P.
Jop
, “
Rheological properties of dense granular flows
,”
C. R. Phys.
16
,
62
72
(
2015
).
11.
O.
Pouliquen
, “
On the shape of granular fronts down rough inclined planes
,”
Phys. Fluids
11
,
1956
1958
(
1999
).
12.
O.
Baran
,
D.
Ertaş
,
T. C.
Halsey
,
G. S.
Grest
, and
J. B.
Lechman
, “
Velocity correlations in dense gravity-driven granular chute flow
,”
Phys. Rev. E
74
,
051302
(
2006
).
13.
M.
Renouf
,
D.
Bonamy
,
F.
Dubois
, and
P.
Alart
, “
Numerical simulation of two-dimensional steady granular flows in rotating drum: On surface flow rheology
,”
Phys. Fluids
17
,
103303
(
2005
).
14.
A. V.
Orpe
and
D.
Khakhar
, “
Rheology of surface granular flows
,”
J. Fluid Mech.
571
,
1
32
(
2007
).
15.
L.
Lacaze
and
R. R.
Kerswell
, “
Axisymmetric granular collapse: A transient 3D flow test of viscoplasticity
,”
Phys. Rev. Lett.
102
,
108305
(
2009
).
16.
P.-Y.
Lagrée
,
L.
Staron
, and
S.
Popinet
, “
The granular column collapse as a continuum: Validity of a two-dimensional Navier-Stokes model with a μ(I)-rheology
,”
J. Fluid Mech.
686
,
378
(
2011
).
17.
A.
Bhateja
and
D. V.
Khakhar
, “
Rheology of dense granular flows in two dimensions: Comparison of fully two-dimensional flows to unidirectional shear flow
,”
Phys. Rev. Fluids
3
,
062301
(
2018
).
18.
A.
Bhateja
and
D. V.
Khakhar
, “
Analysis of granular rheology in a quasi-two-dimensional slow flow by means of discrete element method based simulations
,”
Phys. Fluids
32
,
013301
(
2020
).
19.
A.
Tripathi
and
D. V.
Khakhar
, “
Rheology of binary granular mixtures in the dense flow regime
,”
Phys. Fluids
23
,
113302
(
2011
).
20.
S.
Mandal
and
D. V.
Khakhar
, “
A study of the rheology of planar granular flow of dumbbells using discrete element method simulations
,”
Phys. Fluids
28
,
103301
(
2016
).
21.
S.
Mandal
and
D. V.
Khakhar
, “
A study of the rheology and micro-structure of dumbbells in shear geometries
,”
Phys. Fluids
30
,
013303
(
2018
).
22.
S.
Mandal
and
D. V.
Khakhar
, “
Dense granular flow of mixtures of spheres and dumbbells down a rough inclined plane: Segregation and rheology
,”
Phys. Fluids
31
,
023304
(
2019
).
23.
T.
Börzsönyi
,
R. E.
Ecke
, and
J. N.
McElwaine
, “
Patterns in flowing sand: Understanding the physics of granular flow
,”
Phys. Rev. Lett.
103
,
178302
(
2009
).
24.
A. J.
Holyoake
and
J. N.
McElwaine
, “
High-speed granular chute flows
,”
J. Fluid Mech.
710
,
35
71
(
2012
).
25.
N.
Brodu
,
R.
Delannay
,
A.
Valance
, and
P.
Richard
, “
New patterns in high-speed granular flows
,”
J. Fluid Mech.
769
,
218
228
(
2015
).
26.
R.
Delannay
,
M.
Louge
,
P.
Richard
,
N.
Taberlet
, and
A.
Valance
, “
Towards a theoretical picture of dense granular flows down inclines
,”
Nat. Mater.
6
,
99
108
(
2007
).
27.
W.
Bi
,
R.
Delannay
,
P.
Richard
,
N.
Taberlet
, and
A.
Valance
, “
Two-and three-dimensional confined granular chute flows: Experimental and numerical results
,”
J. Phys.: Condens. Matter
17
,
S2457
(
2005
).
28.
J.
Heyman
,
P.
Boltenhagen
,
R.
Delannay
, and
A.
Valance
, “
Experimental investigation of high speed granular flows down inclines
,”
EPJ Web Conf.
140
,
03057
(
2017
).
29.
V. J. L.
Ralaiarisoa
,
A.
Valance
,
N.
Brodu
, and
R.
Delannay
, “
High speed confined granular flows down inclined: Numerical simulations
,”
EPJ Web Conf.
140
,
03081
(
2017
).
30.
M.
Alam
and
S.
Luding
, “
First normal stress difference and crystallization in a dense sheared granular fluid
,”
Phys. Fluids
15
,
2298
2312
(
2003
).
31.
I.
Srivastava
,
L. E.
Silbert
,
G. S.
Grest
, and
J. B.
Lechman
, “
Viscometric flow of dense granular materials under controlled pressure and shear stress
,”
J. Fluid Mech.
907
,
A18
(
2021
).
32.
B.
Andreotti
, “
A mean-field model for the rheology and the dynamical phase transitions in the flow of granular matter
,”
Europhys. Lett.
79
,
34001
(
2007
).
33.
Y.
Forterre
and
O.
Pouliquen
, “
Stability analysis of rapid granular chute flows: Formation of longitudinal vortices
,”
J. Fluid Mech.
467
,
361
387
(
2002
).
34.
Although24 have reported results for inertial number up to 2.7, the calculation of the inertial number is based on the surface velocity and height of the layer instead of the local shear rate.
35.
A. L.
Biance
,
C.
Clanet
, and
D.
Quéré
, “
Leidenfrost drops
,”
Phys. Fluids
15
,
1632
1637
(
2003
).
36.
P.
Eshuis
,
K.
van der Weele
,
M.
Alam
,
H. J.
van Gerner
,
M.
van der Hoef
,
H.
Kuipers
,
S.
Luding
,
D.
van der Meer
, and
D.
Lohse
, “
Buoyancy driven convection in vertically shaken granular matter: Experiment, numerics, and theory
,”
Granular Matter
15
,
893
911
(
2013
).
37.
T.
Barker
,
D.
Schaeffer
,
P.
Bohorquez
, and
J.
Gray
, “
Well-posed and ill-posed behaviour of the μ(I)-rheology for granular flow
,”
J. Fluid Mech.
779
,
794
818
(
2015
).
You do not currently have access to this content.