Droplet rebound dynamics on superhydrophobic surfaces has attracted much attention due to its importance in numerous technical applications, such as anti-icing and fluid transportation. It has been demonstrated that changing the macro-structure of the superhydrophobic surface could result in significant change in droplet morphology and hydrodynamics. Here, we conduct both experimental and numerical studies of droplet impacting on a cone and identify three different dynamic phases by changing the impacting conditions, i.e., the Weber number and the cone angle. The spreading and retracting dynamics are studied for each phase. Particularly, it is found that in phase 3, where the droplet leaves the surface as a ring, the contact time is reduced by 54% compared with that of a flat surface. A theoretical model based on energy analysis is developed to get the rebound point in phase 3, which agrees well with the simulation result. Besides, the effect of Weber number and cone angle on the contact time is explored. Finally, the phase diagram of the three phases distribution with We and cone angle is given, which can provide guidance to related applications.

1.
C.
Josserand
and
S. T.
Thoroddsen
, “
Drop impact on a solid surface
,”
Annu. Rev. Fluid Mech.
48
,
365
391
(
2016
).
2.
L.
Mishchenko
,
B.
Hatton
,
V.
Bahadur
,
J. A.
Taylor
,
T.
Krupenkin
, and
J.
Aizenberg
, “
Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets
,”
ACS Nano
4
,
7699
7707
(
2010
).
3.
X. K.
Wang
,
J.
Zeng
,
X. Q.
Yu
, and
Y. F.
Zhang
, “
Superamphiphobic coatings with polymer-wrapped particles: Enhancing water harvesting
,”
J. Mater. Chem. A
7
,
5426
5433
(
2019
).
4.
W. H.
Xu
,
H. X.
Zheng
,
Y.
Liu
,
X. F.
Zhou
,
C.
Zhang
,
Y. X.
Song
,
X.
Deng
,
M.
Leung
,
Z. B.
Yang
,
R. X.
Xu
,
Z. L.
Wang
,
X. C.
Zeng
, and
Z. K.
Wang
, “
A droplet-based electricity generator with high instantaneous power density
,”
Nature
578
,
392
396
(
2020
).
5.
J. H.
Kim
, “
Spray cooling heat transfer: The state of the art
,”
Int. J. Heat Fluid Flow
28
,
753
767
(
2007
).
6.
C. L.
Tang
,
M. X.
Qin
,
X. Y.
Weng
,
X. H.
Zhang
,
P.
Zhang
,
J. L.
Li
, and
Z. H.
Huang
, “
Dynamics of droplet impact on solid surface with different roughness
,”
Int. J. Multiphase Flow
96
,
56
69
(
2017
).
7.
I. V.
Roisman
,
A.
Lembach
, and
C.
Tropea
, “
Drop splashing induced by target roughness and porosity: The size plays no role
,”
Adv. Colloid Interface Sci.
222
,
615
621
(
2015
).
8.
S. J.
Lin
,
B. Y.
Zhao
,
S.
Zou
,
J. W.
Guo
,
Z.
Wei
, and
L. Q.
Chen
, “
Impact of viscous droplets on different wettable surfaces: Impact phenomena, the maximum spreading factor, spreading time and post-impact oscillation
,”
J. Colloid Interface Sci.
516
,
86
97
(
2018
).
9.
D.
Khojasteh
,
M.
Kazerooni
,
S.
Salarian
, and
R.
Kamali
, “
Droplet impact on superhydrophobic surfaces: A review of recent developments
,”
J. Ind. Eng. Chem.
42
,
1
14
(
2016
).
10.
C.
Antonini
,
A.
Amirfazli
, and
M.
Marengo
, “
Drop impact and wettability: From hydrophilic to superhydrophobic surfaces
,”
Phys. Fluids
24
,
102104
(
2012
).
11.
M. Y.
Cao
,
D. W.
Guo
,
C. M.
Yu
,
K.
Li
,
M. J.
Liu
, and
L.
Jiang
, “
Water-repellent properties of superhydrophobic and lubricant-infused ‘slippery’ surfaces: A brief study on the functions and applications
,”
ACS Appl. Mater. Interfaces
8
,
3615
3623
(
2016
).
12.
Y. Y.
Wang
,
J.
Xue
,
Q. J.
Wang
,
Q. M.
Chen
, and
J. F.
Ding
, “
Verification of icephobic/anti-icing properties of a superhydrophobic surface
,”
ACS Appl. Mater. Interfaces
5
,
3370
3381
(
2013
).
13.
T.
Maitra
,
C.
Antonini
,
M. K.
Tiwari
,
A.
Mularczyk
,
Z.
Imeri
,
P.
Schoch
, and
D.
Poulikakos
, “
Supercooled water drops impacting superhydrophobic textures
,”
Langmuir
30
,
10855
10861
(
2014
).
14.
Y.
Yamauchi
,
M.
Tenjimbayashi
,
S.
Samitsu
, and
M.
Naito
, “
Durable and flexible superhydrophobic materials: Abrasion/scratching/slicing/droplet impacting/bending/twisting-tolerant composite with porcupinefish-like structure
,”
ACS Appl. Mater. Interfaces
11
,
32381
32389
(
2019
).
15.
C. J.
Lv
,
P. F.
Hao
,
X. W.
Zhang
, and
F.
He
, “
Drop impact upon superhydrophobic surfaces with regular and hierarchical roughness
,”
Appl. Phys. Lett.
108
,
141602
(
2016
).
16.
D.
Richard
and
D.
Quere
, “
Bouncing water drops
,”
Europhys. Lett.
50
,
769
775
(
2000
).
17.
J.
de Ruiter
,
R.
Lagraauw
,
D.
van den Ende
, and
F.
Mugele
, “
Wettability-independent bouncing on flat surfaces mediated by thin air films
,”
Nat. Phys.
11
,
48
53
(
2015
).
18.
D.
Richard
,
C.
Clanet
, and
D.
Quere
, “
Surface phenomena—Contact time of a bouncing drop
,”
Nature
417
,
811
(
2002
).
19.
X.
Li
,
X.
Ma
, and
Z.
Lan
, “
Dynamic behavior of the water droplet impact on a textured hydrophobic/superhydrophobic surface: The effect of the remaining liquid film arising on the Pillars' Tops on the contact time
,”
Langmuir
26
,
4831
4838
(
2010
).
20.
L.
Rayleigh
, “
VI. On the capillary phenomena of jets
,”
Proc. R. Soc. London
29
,
71
97
(
1879
).
21.
J. C.
Bird
,
R.
Dhiman
,
H. M.
Kwon
, and
K. K.
Varanasi
, “
Reducing the contact time of a bouncing drop
,”
Nature
503
,
385
388
(
2013
).
22.
D. G. K.
Aboud
and
A. M.
Kietzig
, “
On the oblique impact dynamics of drops on superhydrophobic surfaces. Part II: restitution coefficient and contact time
,”
Langmuir
34
,
9889
9896
(
2018
).
23.
H.
Wang
,
C.
Liu
,
H. Y.
Zhan
, and
Y. H.
Liu
, “
Droplet asymmetric bouncing on inclined superhydrophobic surfaces
,”
Acs Omega
4
,
12238
12243
(
2019
).
24.
Y. H.
Liu
,
M.
Andrew
,
J.
Li
,
J. M.
Yeomans
, and
Z. K.
Wang
, “
Symmetry breaking in drop bouncing on curved surfaces
,”
Nat. Commun.
6
,
10034
(
2015
).
25.
M.
Abolghasemibizaki
,
R. L.
McMasters
, and
R.
Mohammadi
, “
Towards the shortest possible contact time: Droplet impact on cylindrical superhydrophobic surfaces structured with macro-scale features
,”
J. Colloid Interface Sci.
521
,
17
23
(
2018
).
26.
J. Q.
Hou
,
J. Y.
Gong
,
X.
Wu
,
Q. W.
Huang
, and
Y.
Li
, “
Fast droplet bouncing induced by asymmetric spreading on concave superhydrophobic surfaces
,”
Colloids Surf., A
622
,
126588
(
2021
).
27.
J.
Luo
,
S.-Y.
Wu
,
L.
Xiao
, and
Z.-L.
Chen
, “
Parametric influencing mechanism and control of contact time for droplets impacting on the solid surfaces
,”
Int. J. Mech. Sci.
197
,
106333
(
2021
).
28.
X.
Liu
,
X.
Zhang
, and
J. C.
Min
, “
Maximum spreading of droplets impacting spherical surfaces
,”
Phys. Fluids
31
,
092102
(
2019
).
29.
X.
Liu
,
J.
Min
, and
X.
Zhang
, “
Dynamic behavior and maximum spreading of droplets impacting concave spheres
,”
Phys. Fluids
32
,
092109
(
2020
).
30.
H. N.
Dalgamoni
and
X.
Yong
, “
Numerical and theoretical modeling of droplet impact on spherical surfaces
,”
Phys. Fluids
33
,
052112
(
2021
).
31.
D. J.
Lin
,
L. Z.
Zhang
,
M. C.
Yi
,
S. R.
Gao
,
Y. R.
Yang
, and
X. D.
Wang
, “
Contact time on inclined superhydrophobic surfaces decorated with parallel macro -ridges
,”
Colloids Surf., A
599
,
124924
(
2020
).
32.
D. J.
Lin
,
L.
Wang
,
X. D.
Wang
, and
W. M.
Yan
, “
Reduction in the contact time of impacting droplets by decorating a rectangular ridge on superhydrophobic surfaces
,”
Int. J. Heat Mass Transfer
132
,
1105
1115
(
2019
).
33.
K.
Regulagadda
,
S.
Bakshi
, and
S. K.
Das
, “
Triggering of flow asymmetry by anisotropic deflection of lamella during the impact of a drop onto superhydrophobic surfaces
,”
Phys. Fluids
30
,
072105
(
2018
).
34.
Z. F.
Hu
,
X.
Zhang
,
S. H.
Gao
,
Z. P.
Yuan
,
Y. K.
Lin
,
F. Q.
Chu
, and
X. M.
Wu
, “
Axial spreading of droplet impact on ridged superhydrophobic surfaces
,”
J. Colloid Interface Sci.
599
,
130
139
(
2021
).
35.
H. Y.
Liu
,
F. Q.
Chu
,
J.
Zhang
, and
D. S.
Wen
, “
Nanodroplets impact on surfaces decorated with ridges
,”
Phys. Rev. Fluids
5
,
074201
(
2020
).
36.
S.
Yun
, “
Ellipsoidal drop impact on a single-ridge superhydrophobic surface
,”
Int. J. Mech. Sci.
208
,
106677
(
2021
).
37.
Y. J.
Xu
,
L. L.
Tian
,
C. L.
Zhu
, and
N.
Zhao
, “
Reduction in the contact time of droplet impact on superhydrophobic surface with protrusions
,”
Phys. Fluids
33
,
073306
(
2021
).
38.
C. B.
Liu
,
Q.
Liu
, and
Z. H.
Lin
, “
Dynamical behavior of droplets transiently impacting on superhydrophobic microstructures
,”
Phys. Fluids
32
,
103304
(
2020
).
39.
M.
Baggio
and
B.
Weigand
, “
Numerical simulation of a drop impact on a superhydrophobic surface with a wire
,”
Phys. Fluids
31
,
112107
(
2019
).
40.
S. Y.
Ding
,
Z. F.
Hu
,
L. Y.
Dai
,
X.
Zhang
, and
X. M.
Wu
, “
Droplet impact dynamics on single-pillar superhydrophobic surfaces
,”
Phys. Fluids
33
,
102108
(
2021
).
41.
X.
Zhang
,
Z.
Zhu
,
C.
Zhang
, and
C.
Yang
, “
Reduced contact time of a droplet impacting on a moving superhydrophobic surface
,”
Appl. Phys. Lett.
117
,
151602
(
2020
).
42.
H. Y.
Zhan
,
C. G.
Lu
,
C.
Liu
,
Z. A. K.
Wang
,
C. J.
Lv
, and
Y. H.
Liu
, “
Horizontal motion of a superhydrophobic substrate affects the drop bouncing dynamics
,”
Phys. Rev. Lett.
126
,
234503
(
2021
).
43.
K.
Regulagadda
,
S.
Bakshi
, and
S. K.
Das
, “
Morphology of drop impact on a superhydrophobic surface with macro-structures
,”
Phys. Fluids
29
,
082104
(
2017
).
44.
Z. F.
Hu
,
X. M.
Wu
,
F. Q.
Chu
,
X.
Zhang
, and
Z. P.
Yuan
, “
Off-centered droplet impact on single-ridge superhydrophobic surfaces
,”
Exp. Therm. Fluid Sci.
120
,
110245
(
2021
).
45.
Y. Z.
Shen
,
S. Y.
Liu
,
C. L.
Zhu
,
J.
Tao
,
Z.
Chen
,
H. J.
Tao
,
L.
Pan
,
G. Y.
Wang
, and
T.
Wang
, “
Bouncing dynamics of impact droplets on the convex superhydrophobic surfaces
,”
Appl. Phys. Lett.
110
,
221601
(
2017
).
46.
P.
Chantelot
,
A. M.
Moqaddam
,
A.
Gauthier
,
S. S.
Chikatamarla
,
C.
Clanet
,
I. V.
Karlin
, and
D.
Quere
, “
Water ring-bouncing on repellent singularities
,”
Soft Matter
14
,
2227
2233
(
2018
).
47.
F. Q.
Chu
and
X. M.
Wu
, “
Fabrication and condensation characteristics of metallic superhydrophobic surface with hierarchical micro-nano structures
,”
Appl. Surf. Sci.
371
,
322
328
(
2016
).
48.
S. K.
Li
,
F. Q.
Chu
,
J.
Zhang
,
D.
Brutin
, and
D. S.
Wen
, “
Droplet jumping induced by coalescence of a moving droplet and a static one: Effect of initial velocity
,”
Chem. Eng. Sci.
211
,
115252
(
2020
).
49.
A. A.
Saha
and
S. K.
Mitra
, “
Effect of dynamic contact angle in a volume of fluid (VOF) model for a microfluidic capillary flow
,”
J. Colloid Interface Sci.
339
,
461
480
(
2009
).
50.
S.
Ding
,
X.
Liu
,
X.
Wu
, and
X.
Zhang
, “
Droplet breakup and rebound during impact on small cylindrical superhydrophobic targets
,”
Phys. Fluids
32
,
102106
(
2020
).
51.
S. S.
Deshpande
,
L.
Anumolu
, and
M. F.
Trujillo
, “
Evaluating the performance of the two-phase flow solver interFoam
,”
Comput. Sci. Discovery
5
,
014016
(
2012
).
52.
J.
Zhang
,
M. K.
Borg
, and
J. M.
Reese
, “
Multiscale simulation of dynamic wetting
,”
Int. J. Heat Mass Transfer
115
,
886
896
(
2017
).
53.
A. M. P.
Boelens
,
A.
Latka
, and
J. J.
de Pablo
, “
Observation of the pressure effect in simulations of droplets splashing on a dry surface
,”
Phys. Rev. Fluids
3
,
063602
(
2018
).
54.
H. Y.
Liu
,
J.
Zhang
,
P.
Capobianchi
,
M. K.
Borg
,
Y. H.
Zhang
, and
D. S.
Wen
, “
A multiscale volume of fluid method with self-consistent boundary conditions derived from molecular dynamics
,”
Phys. Fluids
33
,
062004
(
2021
).
55.
J.
Eggers
,
M. A.
Fontelos
,
C.
Josserand
, and
S.
Zaleski
, “
Drop dynamics after impact on a solid wall: Theory and simulations
,”
Phys. Fluids
22
,
062101
(
2010
).
56.
K.
Okumura
,
F.
Chevy
,
D.
Richard
,
D.
Quere
, and
C.
Clanet
, “
Water spring: A model for bouncing drops
,”
Europhys. Lett.
62
,
237
243
(
2003
).
57.
M.
Reyssat
,
A.
Pepin
,
F.
Marty
,
Y.
Chen
, and
D.
Quere
, “
Bouncing transitions on microtextured materials
,”
Europhys. Lett.
74
,
306
312
(
2006
).
58.
D.
Bartolo
,
F.
Bouamrirene
,
E.
Verneuil
,
A.
Buguin
,
P.
Silberzan
, and
S.
Moulinet
, “
Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces
,”
Europhys. Lett.
74
,
299
305
(
2006
).
59.
C.
Clanet
,
C.
Beguin
,
D.
Richard
, and
D.
Quere
, “
Maximal deformation of an impacting drop
,”
J. Fluid Mech.
517
,
199
208
(
2004
).
60.
D.
Bartolo
,
C.
Josserand
, and
D.
Bonn
, “
Retraction dynamics of aqueous drops upon impact on non-wetting surfaces
,”
J. Fluid Mech.
545
,
329
338
(
2005
).
61.
S.
Chandra
and
C. T.
Avedisian
, “
On the collision of a droplet with a solid surface
,”
Proc. R. Soc. London, Ser. A: Math. Phys. Sci.
432
,
13
41
(
1991
).
62.
M.
Pasandideh‐Fard
,
Y. M.
Qiao
,
S.
Chandra
, and
J.
Mostaghimi
, “
Capillary effects during droplet impact on a solid surface
,”
Phys. Fluids
8
,
650
659
(
1996
).
You do not currently have access to this content.