Wetting and dewetting phenomena occur widely in the fields of coating, anti-icing, and microfluidics. While liquid wetting via hole collapse has been intensively researched, liquid film dewetting, especially that induced by hole growth, has rarely been studied. This paper describes a combined experimental and theoretical investigation of metastable liquid film dewetting on superhydrophobic surfaces induced by dry hole growth. Experiments show that dry holes can form upon droplet impact, and these holes mainly exhibit growth, stability, or collapse depending on their initial size. Only the growth behavior can induce liquid film dewetting. Theoretical analysis further clarifies that the hole behavior is a result of competition between the capillary force and hydrostatic pressure, and the scale of the dewetting area is controlled by the Young–Laplace equation and affected by the shape of the superhydrophobic surface. The quantitative relationship between the dewetting velocity and the liquid film thickness is also established. These results deepen our understanding of liquid film dewetting on superhydrophobic surfaces and present fresh insights into related engineering applications.

1.
A. M. J.
Edwards
,
R.
Ledesma-Aguilar
,
M. I.
Newton
,
C. V.
Brown
, and
G.
McHale
, “
A viscous switch for liquid-liquid dewetting
,”
Commun. Phys.
3
,
21
(
2020
).
2.
T.
Kim
and
W.
Kim
, “
Viscous dewetting of metastable liquid films on substrates with microgrooves
,”
J. Colloid Interface Sci.
520
,
11–18
(
2018
).
3.
L.
Wang
,
X.
Wang
, and
Z.-R.
Peng
, “
Impact of geometric factors of roughness on the dewetting dynamics of a liquid film in the Wenzel state
,”
J. Phys. D
54
,
065305
(
2021
).
4.
M. E.
Diaz
and
R. L.
Cerro
, “
A general solution of dewetting flow with a moving contact line
,”
Phys. Fluids
33
,
103601
(
2021
).
5.
D.
Bonn
,
J.
Eggers
,
J.
Indekeu
,
J.
Meunier
, and
E.
Rolley
, “
Wetting and spreading
,”
Rev. Mod. Phys.
81
,
739
(
2009
).
6.
A. M. J.
Edwards
,
R.
Ledesma-Aguilar
,
M. I.
Newton
,
C. V.
Brown
, and
G.
McHale
, “
Not spreading in reverse: The dewetting of a liquid film into a single drop
,”
Sci. Adv.
2
,
e1600183
(
2016
).
7.
P. D.
Gennes
,
F.
Brochard-Wyart
, and
D.
Quéré
,
Capillarity and Wetting Phenomena
(
Springer
,
2004
).
8.
R.
Abbel
,
P.
Teunissen
,
J.
Michels
, and
W. A.
Groen
, “
Narrow conductive structures with high aspect ratios through single-pass inkjet printing and evaporation-induced dewetting
,”
Adv. Eng. Mater.
17
,
615
(
2015
).
9.
D.
Gentili
,
G.
Foschi
,
F.
Valle
,
M.
Cavallini
, and
F.
Biscarini
, “
Applications of dewetting in micro and nanotechnology
,”
Chem. Soc. Rev.
41
,
4430
(
2012
).
10.
S.
Srinivasan
,
S. S.
Chhatre
,
J. O.
Guardado
,
K. C.
Park
,
A. R.
Parker
,
M. F.
Rubner
,
G. H.
McKinley
, and
R. E.
Cohen
, “
Quantification of feather structure, wettability and resistance to liquid penetration
,”
J. R. Soc. Interface
11
,
20140287
(
2014
).
11.
J.
Li
,
N. S.
Ha
,
T.
Liu
,
R. M.
van Dam
, and
C. J.
Kim
, “
Ionic-surfactant-mediated electro-dewetting for digital microfluidics
,”
Nature
572
,
507
(
2019
).
12.
J. Z.
Wang
,
Z. H.
Zheng
,
H. W.
Li
,
W. T. S.
Huck
, and
H.
Sirringhaus
, “
Dewetting of conducting polymer inkjet droplets on patterned surfaces
,”
Nat. Mater.
3
,
171
(
2004
).
13.
P. K.
Tyagi
,
R.
Kumar
, and
P. K.
Mondal
, “
A review of the state-of-the-art nanofluid spray and jet impingement cooling
,”
Phys. Fluids
32
,
121301
(
2020
).
14.
T.
Sun
,
L.
Feng
,
X.
Gao
, and
L.
Jiang
, “
Bioinspired Surfaces with Special Wettability
,”
Acc. Chem. Res.
38
,
644
(
2005
).
15.
S.
Chatterjee
,
J. S.
Murallidharan
,
A.
Agrawal
, and
R.
Bhardwaj
, “
Designing antiviral surfaces to suppress the spread of COVID-19
,”
Phys. Fluids
33
,
052101
(
2021
).
16.
A. M. J.
Edwards
,
R.
Ledesma-Aguilar
,
M. I.
Newton
,
C. V.
Brown
, and
G.
McHale
, “
Electrostatic control of dewetting dynamics
,”
Appl. Phys. Lett.
116
,
253703
(
2020
).
17.
L. O.
Kornum
and
H. K.
Raaschou Nielsen
, “
Surface defects in drying paint films
,”
Prog. Org. Coat.
8
,
275
(
1980
).
18.
A.
Sharma
and
E.
Ruckenstein
, “
Dewetting of solids by the formation of holes in macroscopic liquid films
,”
J. Colloid Interface Sci.
133
,
358
(
1989
).
19.
R. V.
Craster
and
O. K.
Matar
, “
Dynamics and stability of thin liquid films
,”
Rev. Mod. Phys.
81
,
1131
(
2009
).
20.
A. I.
Fedorchenko
and
J.
Hruby
, “
On formation of dry spots in heated liquid films
,”
Phys. Fluids
33
,
023601
(
2021
).
21.
C.-N.
Yu
,
K.
Lazaridis
,
Y.
Wu
,
E.
Voroshilov
,
M. D.
Krivilyov
,
S. D.
Mesarovic
, and
D. P.
Sekulic
, “
Filling a hole by capillary flow of liquid metal-equilibria and instabilities
,”
Phys. Fluids
33
,
034109
(
2021
).
22.
C.
Li
,
D.
Zhao
,
J.
Wen
,
J.
Cheng
, and
X.
Lu
, “
Evolution of entrained water film thickness and dynamics of Marangoni flow in Marangoni drying
,”
RSC Adv.
8
,
4995
(
2018
).
23.
S.
Kim
,
J.
Kim
, and
H.-Y.
Kim
, “
Dewetting of liquid film via vapour-mediated Marangoni effect
,”
J. Fluid Mech.
872
,
100
(
2019
).
24.
S.
Kim
,
J.
Kim
, and
H.-Y.
Kim
, “
Formation, growth, and saturation of dry holes in thick liquid films under vapor-mediated Marangoni effect
,”
Phys. Fluids
31
,
112105
(
2019
).
25.
N.
Mulji
and
S.
Chandra
, “
Rupture and dewetting of water films on solid surfaces
,”
J. Colloid Interface Sci.
352
,
194
(
2010
).
26.
X.
Noblin
,
A.
Buguin
, and
F.
Brochard-Wyart
, “
Cascade of shocks in inertial liquid-liquid dewetting
,”
Phys. Rev. Lett.
96
,
156101
(
2006
).
27.
N.
Peron
,
F.
Brochard-Wyart
, and
H.
Duval
, “
Dewetting of low-viscosity films at solid/liquid interfaces
,”
Langmuir
28
,
15844
(
2012
).
28.
G. I.
Taylor
and
D. H.
Michael
, “
On making holes in a sheet of fluid
,”
J. Fluid Mech.
58
,
625
(
1973
).
29.
J. A.
Moriarty
and
L. W.
Schwartz
, “
Dynamic considerations in the closing and opening of holes in thin liquid films
,”
J. Colloid Interface Sci.
161
,
335
(
1993
).
30.
C.
Lv
,
M.
Eigenbrod
, and
S.
Hardt
, “
Stability and collapse of holes in liquid layers
,”
J. Fluid Mech.
855
,
1130
(
2018
).
31.
S.
Ding
,
Z.
Hu
,
L.
Dai
,
X.
Zhang
, and
X.
Wu
, “
Droplet impact dynamics on single-pillar superhydrophobic surfaces
,”
Phys. Fluids
33
,
102108
(
2021
).
32.
B.
Liu
and
Y.
Zhang
, “
A numerical study on the natural transition locations in the flat-plate boundary layers on superhydrophobic surfaces
,”
Phys. Fluids
32
,
124103
(
2020
).
33.
P. G.
López
,
M. J.
Miksis
, and
S. G.
Bankoff
, “
Stability and evolution of a dry spot
,”
Phys. Fluids
13
,
1601
(
2001
).
34.
B.
Ji
,
Q.
Song
, and
Q.
Yao
, “
Limit for small spheres to float by dynamic analysis
,”
Langmuir
34
,
10163
(
2018
).
35.
C. W. J.
Berendsen
,
J. C. H.
Zeegers
,
G. C. F. L.
Kruis
,
M.
Riepen
, and
A. A.
Darhuber
, “
Rupture of thin liquid films induced by impinging air-jets
,”
Langmuir
28
,
9977
(
2012
).
36.
Z.
Zheng
,
M. A.
Fontelos
,
S.
Shin
,
M. C.
Dallaston
,
D.
Tseluiko
,
S.
Kalliadasis
, and
H. A.
Stone
, “
Healing capillary films
,”
J. Fluid Mech.
838
,
404
(
2018
).
37.
Z.
Che
and
O. K.
Matar
, “
Impact of droplets on liquid films in the presence of surfactant
,”
Langmuir
33
,
12140
(
2017
).
38.
N. E.
Ersoy
and
M.
Eslamian
, “
Capillary surface wave formation and mixing of miscible liquids during droplet impact onto a liquid film
,”
Phys. Fluids
31
,
012107
(
2019
).
39.
T.
Khan
,
N. E.
Ersoy
, and
M.
Eslamian
, “
Droplet impact on a wavy liquid film under multi-axis lateral vibrations
,”
Exp. Fluids
61
,
173
(
2020
).
40.
Y.
Li
,
Y.
Zheng
,
Z.
Lan
,
W.
Xu
, and
X.
Ma
, “
The evolution of droplet impacting on thin liquid film at superhydrophilic surface
,”
Appl. Phys. Lett.
111
,
231601
(
2017
).
41.
G.
Liang
and
I.
Mudawar
, “
Review of mass and momentum interactions during drop impact on a liquid film
,”
Int. J. Heat Mass Transfer
101
,
577
(
2016
).
42.
B.
Ray
,
G.
Biswas
, and
A.
Sharma
, “
Regimes during liquid drop impact on a liquid pool
,”
J. Fluid Mech.
768
,
492
(
2015
).
43.
H.
Shetabivash
,
F.
Ommi
, and
G.
Heidarinejad
, “
Numerical analysis of droplet impact onto liquid film
,”
Phys. Fluids
26
,
012102
(
2014
).
44.
N. P.
van Hinsberg
,
M.
Budakli
,
S.
Gohler
,
E.
Berberovic
,
I. V.
Roisman
,
T.
Gambaryan-Roisman
,
C.
Tropea
, and
P.
Stephan
, “
Dynamics of the cavity and the surface film for impingements of single drops on liquid films of various thicknesses
,”
J. Colloid Interface Sci.
350
,
336
(
2010
).
45.
S.
Kim
,
Z.
Wu
,
E.
Esmaili
,
J. J.
Dombroskie
, and
S.
Jung
, “
How a raindrop gets shattered on biological surfaces
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
13901
(
2020
).
You do not currently have access to this content.