The spanwise oscillation provides an accessory or alternative to flapping motion toward high-efficiency bio-inspired flight. The power factor that measures the efficiency of a gliding wing with spanwise oscillation to support a unit weight is investigated in this work. The gliding wing model consists of a rectangular flat plate that oscillates sinusoidally along the spanwise direction in a uniform upstream flow at a post-stall angle of attack. The unsteady flows and aerodynamic forces are obtained by numerically solving the incompressible Navier–Stokes equations at a Reynolds number of 300 (based on the uniform upstream velocity and the chord length). It is found that the spanwise oscillation can effectively enhance the power factor of the rectangular wing. The power factor under the optimal spanwise oscillation is 1.97 times as large as that without spanwise oscillation. Then, we introduce an effective reduced frequency by accounting for the effect of spanwise oscillation on the velocity encountered by the wing. The results show that the optimal effective reduced frequency locates in a narrow region from 0.47 to 0.56. Finally, the analyses of the vortex structures and the Lamb vector field indicate that the enhanced power factor results from the interaction between the stable leading-edge vortex and side-edge vortices associated with the spanwise oscillation. This work is expected to be helpful in understanding the vortex dynamics and guiding the kinematic design of the high-efficiency bio-inspired flight with spanwise oscillation.

1.
M.
Hassanalian
and
A.
Abdelkefi
, “
Classifications, applications, and design challenges of drones: A review
,”
Prog. Aerosp. Sci.
91
,
99
131
(
2017
).
2.
J.
Han
,
Z.
Hui
,
F.
Tian
, and
G.
Chen
, “
Review on bio-inspired flight systems and bionic aerodynamics
,”
Chin. J. Aeronaut.
34
,
170
186
(
2021
).
3.
D. D.
Chin
and
D.
Lentink
, “
Flapping wing aerodynamics: From insects to vertebrates
,”
J. Exp. Biol.
219
,
920
932
(
2016
).
4.
D.
Lentink
and
M. H.
Dickinson
, “
Rotational accelerations stabilize leading edge vortices on revolving fly wings
,”
J. Exp. Biol.
212
,
2705
2719
(
2009
).
5.
C. P.
Ellington
,
C.
van den Berg
,
A. P.
Willmott
, and
A. L. R.
Thomas
, “
Leading-edge vortices in insect flight
,”
Nature
384
,
626
630
(
1996
).
6.
H.
Liu
,
C. P.
Ellington
,
K.
Kawachi
,
C.
Van Den Berg
, and
A. P.
Willmott
, “
A computational fluid dynamic study of hawkmoth hovering
,”
J. Exp. Biol.
201
,
461
477
(
1998
).
7.
M. H.
Dickinson
,
F.-O.
Lehmann
, and
S. P.
Sane
, “
Wing rotation and the aerodynamic basis of insect flight
,”
Science
284
,
1954
1960
(
1999
).
8.
P.-Y.
Zou
,
Y.-H.
Lai
, and
J.-T.
Yang
, “
Effects of phase lag on the hovering flight of damselfly and dragonfly
,”
Phys. Rev. E
100
,
063102
(
2019
).
9.
B.
Yin
and
H.
Luo
, “
Effect of wing inertia on hovering performance of flexible flapping wings
,”
Phys. Fluids
22
,
111902
(
2010
).
10.
Y.
Ryu
,
J. W.
Chang
, and
J.
Chung
, “
Aerodynamic characteristics of flexible wings with leading-edge veins in pitch motions
,”
Aerosp. Sci. Technol.
86
,
558
571
(
2019
).
11.
J-d
Zhang
and
W.-X.
Huang
, “
On the role of vortical structures in aerodynamic performance of a hovering mosquito
,”
Phys. Fluids
31
,
051906
(
2019
).
12.
G.
Liu
,
H.
Dong
, and
C.
Li
, “
Vortex dynamics and new lift enhancement mechanism of wing–body interaction in insect forward flight
,”
J. Fluid Mech.
795
,
634
651
(
2016
).
13.
L.-H.
Feng
,
Z.-Y.
Li
, and
Y.-L.
Chen
, “
Lift enhancement strategy and mechanism for a plunging airfoil based on vortex control
,”
Phys. Fluids
32
,
087116
(
2020
).
14.
X.
Cheng
and
M.
Sun
, “
Very small insects use novel wing flapping and drag principle to generate the weight-supporting vertical force
,”
J. Fluid Mech.
855
,
646
670
(
2018
).
15.
Y. Z.
Lyu
,
H. J.
Zhu
, and
M.
Sun
, “
Aerodynamic forces and vortical structures of a flapping wing at very low Reynolds numbers
,”
Phys. Fluids
31
,
041901
(
2019
).
16.
T.
Gao
and
X.-Y.
Lu
, “
Insect normal hovering flight in ground effect
,”
Phys. Fluids
20
,
087101
(
2008
).
17.
X.
Meng
, “
Ceiling effects on the aerodynamics of a flapping wing at hovering condition
,”
Phys. Fluids
31
,
051905
(
2019
).
18.
X.
Meng
,
Y.
Zhang
, and
G.
Chen
, “
Ceiling effects on the aerodynamics of a flapping wing with advance ratio
,”
Phys. Fluids
32
,
021904
(
2020
).
19.
J.
Han
,
Z.
Yuan
, and
G.
Chen
, “
Effects of kinematic parameters on three-dimensional flapping wing at low Reynolds number
,”
Phys. Fluids
30
,
081901
(
2018
).
20.
J.
Deng
,
L.
Teng
,
D.
Pan
, and
X.
Shao
, “
Inertial effects of the semi-passive flapping foil on its energy extraction efficiency
,”
Phys. Fluids
27
,
053103
(
2015
).
21.
M.
Rahromostaqim
,
A.
Posa
, and
E.
Balaras
, “
Numerical investigation of the performance of pitching airfoils at high amplitudes
,”
AIAA J.
54
,
2221
2232
(
2016
).
22.
Y. H.
Chen
and
M.
Skote
, “
Study of lift enhancing mechanisms via comparison of two distinct flapping patterns in the dragonfly Sympetrum flaveolum
,”
Phys. Fluids
27
,
033604
(
2015
).
23.
T. Y.
Hubel
and
C.
Tropea
, “
The importance of leading edge vortices under simplified flapping flight conditions at the size scale of birds
,”
J. Exp. Biol.
213
,
1930
1939
(
2010
).
24.
H. J.
Zhu
and
M.
Sun
, “
Unsteady aerodynamic force mechanisms of a hoverfly hovering with a short stroke-amplitude
,”
Phys. Fluids
29
,
081901
(
2017
).
25.
L.-G.
Liu
,
G.
Du
, and
M.
Sun
, “
Aerodynamic-force production mechanisms in hovering mosquitoes
,”
J. Fluid Mech.
898
,
A19
(
2020
).
26.
J. M.
Birch
and
M. H.
Dickinson
, “
Spanwise flow and the attachment of the leading-edge vortex on insect wings
,”
Nature
412
,
729
733
(
2001
).
27.
T.
Jardin
, “
Coriolis effect and the attachment of the leading edge vortex
,”
J. Fluid Mech.
820
,
312
340
(
2017
).
28.
J. D.
Eldredge
and
A. R.
Jones
, “
Leading-edge vortices: Mechanics and modeling
,”
Annu. Rev. Fluid Mech.
51
,
75
104
(
2019
).
29.
Q.
Zhong
,
H.
Dong
, and
D. B.
Quinn
, “
How dorsal fin sharpness affects swimming speed and economy
,”
J. Fluid Mech.
878
,
370
385
(
2019
).
30.
K. E.
Crandell
and
B. W.
Tobalske
, “
Kinematics and aerodynamics of avian upstrokes during slow flight
,”
J. Exp. Biol.
218
,
2518
2527
(
2015
).
31.
Z.
Guan
and
Y.
Yu
, “
Aerodynamics and mechanisms of elementary morphing models for flapping wing in forward flight of bat
,”
Appl. Math. Mech.
36
,
669
680
(
2015
).
32.
J.
Videler
,
E.
Stamhuis
, and
G.
Povel
, “
Leading-edge vortex lifts swifts
,”
Science
306
,
1960
1962
(
2004
).
33.
M.
Wolf
,
L. C.
Johansson
,
R.
von Busse
,
Y.
Winter
, and
A.
Hedenström
, “
Kinematics of flight and the relationship to the vortex wake of a Pallas' long tongued bat (Glossophaga soricina)
,”
J. Exp. Biol.
213
,
2142
2153
(
2010
).
34.
S.
Wang
,
X.
Zhang
,
G.
He
, and
T.
Liu
, “
Lift enhancement by bats' dynamically changing wingspan
,”
J. R. Soc. Interface
12
,
20150821
(
2015
).
35.
I. J.
Yeaton
,
S. D.
Ross
,
G. A.
Baumgardner
, and
J. J.
Socha
, “
Undulation enables gliding in flying snakes
,”
Nat. Phys.
16
,
974
982
(
2020
).
36.
A.
Krishnan
,
J. J.
Socha
,
P. P.
Vlachos
, and
L.
Barba
, “
Lift and wakes of flying snakes
,”
Phys. Fluids
26
,
031901
(
2014
).
37.
F.
Jafari
,
D.
Holden
,
R.
LaFoy
,
P. P.
Vlachos
, and
J. J.
Socha
, “
The aerodynamics of flying snake airfoils in tandem configuration
,”
J. Exp. Biol.
224
,
jeb233635
(
2021
).
38.
K.
Miklasz
,
M.
LaBarbera
,
X.
Chen
, and
J.
Socha
, “
Effects of body cross-sectional shape on flying snake aerodynamics
,”
Exp. Mech.
50
,
1335
1348
(
2010
).
39.
D.
Holden
,
J. J.
Socha
,
N. D.
Cardwell
, and
P. P.
Vlachos
, “
Aerodynamics of the flying snake chrysopelea paradisi: How a bluff body cross-sectional shape contributes to gliding performance
,”
J. Exp. Biol.
217
,
382
394
(
2014
).
40.
R.
Ajaj
,
M.
Friswell
,
M.
Bourchak
, and
W.
Harasani
, “
Span morphing using the GNATSpar wing
,”
Aerosp. Sci. Technol.
53
,
38
46
(
2016
).
41.
R. M.
Ajaj
and
G. K.
Jankee
, “
The transformer aircraft: A multimission unmanned aerial vehicle capable of symmetric and asymmetric span morphing
,”
Aerosp. Sci. Technol.
76
,
512
522
(
2018
).
42.
C.
Huang
,
Y.
Chao
,
W.
Zhigang
, and
T.
Changhong
, “
Variations of flutter mechanism of a span-morphing wing involving rigid-body motions
,”
Chin. J. Aeronaut.
31
,
490
497
(
2018
).
43.
W.
Li
and
D.
Jin
, “
Flutter suppression and stability analysis for a variable-span wing via morphing technology
,”
J. Sound Vib.
412
,
410
423
(
2018
).
44.
S.
Wang
,
X.
Zhang
,
G.
He
, and
T.
Liu
, “
Lift enhancement by dynamically changing wingspan in forward flapping flight
,”
Phys. Fluids
26
,
061903
(
2014
).
45.
S.
Wang
,
G.
He
, and
X.
Zhang
, “
Lift enhancement on spanwise oscillating flat-plates in low-Reynolds-number flows
,”
Phys. Fluids
27
,
061901
(
2015
).
46.
M.
Triantafyllou
,
G.
Triantafyllou
, and
R.
Gopalkrishnan
, “
Wake mechanics for thrust generation in oscillating foils
,”
Phys. Fluids A
3
,
2835
2837
(
1991
).
47.
G. S.
Triantafyllou
,
M. S.
Triantafyllou
, and
M. A.
Grosenbaugh
, “
Optimal thrust development in oscillating foils with application to fish propulsion
,”
J. Fluids Struct.
7
,
205
224
(
1993
).
48.
G. K.
Taylor
,
R. L.
Nudds
, and
A. L.
Thomas
, “
Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency
,”
Nature
425
,
707
711
(
2003
).
49.
K.
Taira
and
T.
Colonius
, “
Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers
,”
J. Fluid Mech.
623
,
187
207
(
2009
).
50.
K.
Taira
and
T.
Colonius
, “
Effect of tip vortices in low-reynolds-number poststall flow control
,”
AIAA J.
47
,
749
756
(
2009
).
51.
K. K.
Chen
,
T.
Colonius
, and
K.
Taira
, “
The leading-edge vortex and quasisteady vortex shedding on an accelerating plate
,”
Phys. Fluids
22
,
033601
(
2010
).
52.
K.
Taira
,
C. W.
Rowley
,
T.
Colonius
, and
D. R.
Williams
, “
Lift enhancement for low-aspect-ratio wings with periodic excitation
,”
AIAA J.
48
,
1785
1790
(
2010
).
53.
K.
Taira
,
W.
Dickson
,
T.
Colonius
,
M.
Dickinson
, and
C.
Rowley
, “
Unsteadiness in flow over a flat plate at angle-of-attack at low reynolds numbers
,” in
45th AIAA Aerospace Sciences Meeting and Exhibit
(
AIAA
,
2007
), p.
710
.
54.
S.
Wang
and
X.
Zhang
, “
An immersed boundary method based on discrete stream function formulation for two-and three-dimensional incompressible flows
,”
J. Comput. Phys.
230
,
3479
3499
(
2011
).
55.
S.
Wang
,
G.
He
, and
X.
Zhang
, “
Parallel computing strategy for a flow solver based on immersed boundary method and discrete stream-function formulation
,”
Comput. Fluids
88
,
210
224
(
2013
).
56.
W.
Shyy
,
P.
Trizila
,
C-k
Kang
, and
H.
Aono
, “
Can tip vortices enhance lift of a flapping wing?
,”
AIAA J.
47
,
289
293
(
2009
).
57.
Z. J.
Wang
, “
Aerodynamic efficiency of flapping flight: Analysis of a two-stroke model
,”
J. Exp. Biol.
211
,
234
238
(
2008
).
58.
X.
Lin
,
J.
Wu
, and
T.
Zhang
, “
Self-directed propulsion of an unconstrained flapping swimmer at low Reynolds number: Hydrodynamic behaviour and scaling laws
,”
J. Fluid Mech.
907
,
R3
(
2021
).
59.
A. W.
Mackowski
and
C. H. K.
Williamson
, “
Direct measurement of thrust and efficiency of an airfoil undergoing pure pitching
,”
J. Fluid Mech.
765
,
524
543
(
2015
).
60.
G.
Wu
,
Y.
Yang
, and
L.
Zeng
, “
Kinematics, hydrodynamics and energetic advantages of burst-and-coast swimming of koi carps (Cyprinus carpio koi
),”
J. Exp. Biol.
210
,
2181
2191
(
2007
).
61.
G.-Y.
He
,
S.-G.
Zhang
, and
X.
Zhang
, “
Thrust generation and wake structure of wiggling hydrofoil
,”
Appl. Math. Mech.
31
,
585
592
(
2010
).
62.
B.
Shahriari
,
K.
Swersky
,
Z.
Wang
,
R. P.
Adams
, and
N. de
Freitas
, “
Taking the human out of the loop: A review of Bayesian optimization
,”
Proc. IEEE
104
,
148
175
(
2016
).
63.
M.
Hoffman
,
E.
Brochu
, and
N.
de Freitas
, “
Portfolio allocation for Bayesian optimization
,” in
Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence
(
AUAI Press
,
2011
), pp.
327
336
.
64.
T. de P.
Vasconcelos
,
D. A.
de Souza
,
C. L.
Mattos
, and
J. P.
Gomes
, “
No-PASt-BO: Normalized portfolio allocation strategy for Bayesian optimization
,” in
IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)
(
IEEE
,
2019
), pp.
561
568
.
65.
C.
Wang
,
Z.
Xu
,
X.
Zhang
, and
S.
Wang
, “
Bayesian optimization for the spanwise oscillation of a gliding flat-plate
,” arXiv:2109.04382 (
2021
).
66.
C.
Sujatha
,
Vibration and Acoustics: Measurement and Signal Analysis
(
McGraw-Hill Education
,
2010
).
67.
W.
Shyy
,
H.
Aono
,
S. K.
Chimakurthi
,
P.
Trizila
,
C.-K.
Kang
,
C. E.
Cesnik
, and
H.
Liu
, “
Recent progress in flapping wing aerodynamics and aeroelasticity
,”
Prog. Aerosp. Sci.
46
,
284
327
(
2010
).
68.
M. S.
Triantafyllou
,
G.
Triantafyllou
, and
D.
Yue
, “
Hydrodynamics of fishlike swimming
,”
Annu. Rev. Fluid Mech.
32
,
33
53
(
2000
).
69.
S.
Deng
and
B.
van Oudheusden
, “
Wake structure visualization of a flapping-wing micro-air-vehicle in forward flight
,”
Aerosp. Sci. Technol.
50
,
204
211
(
2016
).
70.
Z. C.
Zheng
and
Z.
Wei
, “
Study of mechanisms and factors that influence the formation of vortical wake of a heaving airfoil
,”
Phys. Fluids
24
,
103601
(
2012
).
71.
S.
Wang
,
X.
Zhang
,
G.
He
, and
T.
Liu
, “
A lift formula applied to low-Reynolds-number unsteady flows
,”
Phys. Fluids
25
,
093605
(
2013
).
72.
W.
Tong
,
Y.
Yang
, and
S.
Wang
, “
Estimating thrust from shedding vortex surfaces in the wake of a flapping plate
,”
J. Fluid Mech.
920
,
A10
(
2021
).
You do not currently have access to this content.