Analysis of tornado strength winds interacting with a highway overpass structure is presented with emphasis on air flow patterns above and under the bridge. Experiments were performed in a wind tunnel with the scaled geometry of an overpass. Velocity and dynamic pressure measurements were obtained independently at four locations as the overpass was rotated about its vertical axis between air flow angles of approach between 0° and 90°, at 10° increments. Lift and drag forces on the overpass geometry were also measured. To compare various highway overpass locations with the surroundings, the measured dynamic pressure and velocity, drag and lift forces, and drag coefficients at each of the locations and approach angles were examined. It was found that at all locations, the measured velocities never exceeded the freestream velocity of 190.2 ft/s (58 m/s; 130 mph), with the maximum Re occurring above the overpass and between the I-beams. A theoretical maximum pressure drop for the tornado center was calculated to be 0.5 psi for an Enhanced Fujita 2 scale tornado and compared with the highest pressure drop of 0.278 psi, determined from the experiments. Calculated pressure coefficients Cp were mostly <0 and some close to one dynamic head less than ambient. The drag coefficients Cd remain primarily in the laminar region with later transition to turbulence. Using experimental data from the literature, drag forces on an average size man in crouching and laying positions between the overpass I-beams section were determined to be a maximum of 31 lbf.

1.
D. J.
Miller
,
C. A.
Doswell
 III
,
H. E.
Brooks
,
G. J.
Stumpf
, and
E. N.
Rasmussen
, “
Highway overpasses as tornado shelters: Fallout from the 3 May 1999, Oklahoma/Kansas violent tornado outbreak
,”
presented at National Weather Association, 24th Annual Meeting
,
Biloxi, MS
,
1999
.
2.
See
Storm Prediction Center
, NOAA/National Weather Service, http://www.spc.noaa.gov/faq/tornado/#Safety for “
The online tornado FAQ, frequently asked questions about tornadoes
” (03/19/
2021
).
3.
S.
Brown
,
P.
Archer
,
E.
Kruger
, and
S.
Mallonee
, “
Tornado-related deaths and injuries on Oklahoma due to the 3 May 1999 tornadoes
,”
Weather Forecast.
17
,
343
353
(
2002
).
4.
H.
Estrada
and
E.
Kiesling
, “
State-of-the-art protection against severe storms
,” in
Architectural Engineering Conference
, 29 March–1 April 2006 (
ASCE
,
Omaha, NE
,
2006
).
5.
B.
Hammer
and
T. W.
Schmidlin
, “
Response to warnings during the 3 May 1999 Oklahoma city tornado: Reasons and relative injury rates
,”
Weather Forecast.
17
,
577
581
(
2002
).
6.
T. W.
Schmidlin
,
B. O.
Hammer
,
Y.
Ono
, and
P. S.
King
, “
Tornado shelter-seeking behavior and tornado shelter options among mobile home residents in the United States
,”
Nat. Hazards
48
,
191
201
(
2009
).
7.
M. J.
Paulikas
and
T. W.
Schmidlin
, “
US tornado fatalities in motor vehicles (1991–2015)
,”
Nat. Hazards
87
,
121
143
(
2017
).
8.
S. J.
Ying
and
C. C.
Chang
, “
Exploratory model study of tornado-like vortex dynamics
,”
J. Atmos. Sci.
27
,
3
14
(
1970
).
9.
N. B.
Ward
, “
The exploration of certain features of tornado dynamics using a laboratory model
,”
J. Atmos. Sci.
29
,
1194
1204
(
1972
).
10.
H.
Hangan
,
D.
Romanic
, and
C.
Jubayer
, “
Three-dimensional, non-stationary and non-Gaussian (3D-NS-NG) wind fields and their implications to wind–structure interaction problems
,”
J. Fluids Struct.
91
,
102583
(
2019
).
11.
W. S.
Lewellen
, “
A solution for three-dimensional vortex flows with strong circulation
,”
J. Fluid Mech.
14
,
420
432
(
1962
).
12.
W. S.
Lewellen
,
D. C.
Lewellen
, and
R. I.
Sykes
, “
Large-eddy simulation of a tornado's interaction with the surface
,”
J. Atmos. Sci.
54
,
581
605
(
1997
).
13.
D. C.
Lewellen
and
W. S.
Lewellen
, “
The influence of a local swirl ratio on tornado intensification near the surface
,”
J. Atmos. Sci.
57
,
527
(
2000
).
14.
D. C.
Lewellen
and
W. S.
Lewellen
, “
Near-surface vortex intensification through corner flow collapse
,”
J. Atmos. Sci.
64
,
2195
2209
(
2007
).
15.
Z.
Tang
,
C.
Feng
,
L.
Wu
,
D.
Zuo
, and
D. L.
James
, “
Characteristics of tornado-like vortices simulated in a large-scale ward-type simulator
,”
Boundary-Layer Meteorol.
166
,
327
350
(
2018
).
16.
M.
Refan
and
H.
Hangan
, “
Near surface experimental exploration of tornado vortices
,”
J. Wind Eng. Ind. Aerodyn.
175
,
120
135
(
2018
).
17.
M.
Kawaguchi
,
T.
Tamura
, and
H.
Kawai
, “
Analysis of tornado and near-ground turbulence using a hybrid meteorological model/engineering LES method
,”
Int. J. Heat Fluid Flow
80
,
108464
(
2019
).
18.
M.
Karami
,
L.
Carassale
, and
H.
Hangan
, “
Statistical and modal analysis of surface pressure fluctuations in tornado-like vortices
,”
Phys. Fluids
32
,
075109
(
2020
).
19.
M. D.
Flournoy
,
M. C.
Coniglio
,
E. N.
Rasmussen
,
J. C.
Furtado
, and
B. E.
Coffer
, “
Modes of storm-scale variability and tornado potential in VORTEX2 near- and far-field tornadic environments
,”
Mon. Weather Rev.
148
,
4185
4207
(
2020
).
20.
M. A.
Satrio
,
D. J.
Bodine
,
A. E.
Reinhart
,
T.
Maruyama
, and
F. T.
Lombardo
, “
Understanding how complex terrain impacts tornado dynamics using a suite of high-resolution numerical simulations
,”
J. Atmos. Sci.
77
,
3277
3300
(
2020
).
21.
F. M.
White
and
H.
Xue
,
Fluid Mechanics
, 9th ed. (
McGraw-Hill
,
2021
).
22.
P. K.
Kundu
and
I. M.
Cohen
,
Fluid Mechanics
, 2nd ed. (
Academic Press
,
San Diego, CA
,
2002
).
23.
W. H.
Hoecker
, “
Wind speed and air flow patterns in the Dallas tornado of April 2, 1957
,”
Mon. Weather Rev.
88
,
167
180
(
1960
).
24.
R. C.
Garson
,
J. M.
Catalán
, and
A. C.
Cornell
, “
Tornado design winds based on risk
,”
J. Struct. Div.
101
,
1883
1897
(
1975
).
25.
R. D.
Blevins
,
Applied Fluid Dynamics Handbook
(
Van Nostrand Reinhold Co., Inc
,
1984
).
26.
W. L.
Coulbourne
,
2008
, “
Wind speed analysis of Greensburg, KS tornado
,” in
Structures Congress—Structures Congress 2008: Crossing the Borders
, 24–26 April 2008 (
ASCE
,
Vancouver, BC, Canada
, 2008).
27.
R.
Edwards
,
J. G.
LaDue
,
J. T.
Ferree
,
K.
Scharfenberg
,
C.
Maier
, and
W. L.
Coulbourne
, “
Tornado intensity estimation: Past, present, and future
,”
Bull. Amer. Meteor. Soc.
94
,
641
653
(
2013
).
28.
J. R.
McDonald
and
K. C.
Mehta
,
A Recommendation for an Enhanced Fujita Scale (EF-Scale)
[
National Weather Service (NWS)
,
Lubbock, TX
,
2004
].
29.
Markee
,
J. E. H.
Beckerley
,
J. G.
Sanders
, and
K.
E
.
Techinical Basis for Interim Regional Tornado Criteria
(
US Atomic Energy Commission, Office of Regulation
,
Washington, DC
,
1974
).
30.
C. A.
Doswell
,
H. E.
Brooks
, and
N.
Dotzek
, “
On the implementation of the Enhanced Fujita scale in the USA
,”
Atmos. Res.
93
,
554
563
(
2009
).
31.
F. M.
White
and
J.
Majdalani
,
Viscous Fluid Flow
, 4th ed. (
McGraw-Hill
,
2022
).
32.
E.
Buckingham
, “
Model experiments and the forms of empirical equations
,” in
ASME Transactions Spring Meeting, Buffalo, NY
, June 1915 (
ASME
,
New York
,
1916
), Vol.
37
, Paper No. 1487, p.
263
.
33.
T.
Schmidlin
,
B.
Hammer
,
P.
King
,
Y.
Ono
,
L.
Scott Miller
, and
G.
Thumann
, “
Unsafe at any (wind) speed? Testing the stability of motor vehicles in severe winds
,”
Bull. Am. Meteorol. Soc.
83
,
1821
(
2002
).
34.
J. S.
Grams
,
R. L.
Thompson
,
D. V.
Snively
,
J. A.
Prentice
,
G. M.
Hodges
, and
L. J.
Reames
, “
A climatology and comparison of parameters for significant tornado events in the United States
,”
Weather Forecast.
27
,
106
123
(
2012
).
35.
D. W.
Fish
,
Rhode Island LRFD Bridge Design Manual
(
RI Department of Transportation
,
Providence, RI
,
2007
).
36.
D. W.
Fish
and
G. K.
Chahine
,
Bridge Design Standard Details
(
Rhode Island Department of Transportation
,
Providence, RI
,
2015
).
37.
D. K.
Lilly
, “
Tornado dynamics
,”
NCAR Manuscr. No.
69–117
,
58
(
1969
).
38.
B. H.
Fiedler
and
R.
Rotunno
, “
A theory for the maximum windspeeds in tornado-like vortices
,”
J. Atmos. Sci.
43
,
2328
2340
(
1986
).
39.
N. D.
Katopodes
, “
Vorticity dynamics
,” in
Free-Surface Flow
(
Butterworth-Heinemann
,
2019
), Chap. 7, pp.
516
565
.
40.
D. S.
Nolan
and
B. F.
Farrell
, “
The structure and dynamics of tornado-like vortices
,”
J. Atmos. Sci.
56
,
2908
2936
(
1999
).
41.
R.
Rotunno
, “
The fluid dynamics of tornadoes
,”
Annu. Rev. Fluid Mech.
45
,
59
84
(
2013
).
42.
H. B.
Bluestein
,
J. G.
Ladue
,
H.
Stein
,
D.
Speheger
, and
W. F.
Unruh
, “
Doppler radar wind spectra of supercell tornadoes
,”
Mon. Weather Rev.
121
,
2200
2222
(
1993
).
43.
B. H.
Fiedler
, “
The thermodynamic speed limit and its violation in axisymmetric numerical simulations of tornado-like vortices
,”
Atmos.-Ocean
32
,
335
359
(
1994
).
44.
C.
Garson Robert
,
J.
Morla-Catalan
, and
C. C.
Allin
, “
Tornado risk evaluation using wind speed profiles
,”
J. Struct. Div.
101
,
1167
1171
(
1975
).
45.
W. D.
Baines
,
Effects of Velocity Distribution on Wind Loads and Flow Patterns on Buildings
(
National Physical Laboratory
,
London
,
1963
).
46.
H.
Blasius
, “
The boundary layers in fluids with little friction,” NACA Tech. Memorandum 1256, February 1950 [translation of “Grenzschichten in flussigkeiten mit kleiner reibung
,”
Zeitschrift Math. Phys.
56
,
1
(
1908
)].
47.
S.
Goldstein
, “
On the two-dimensional steady flow of a viscous fluid behind a solid body—I
,”
Proc. R. Soc. London, Ser. A
142
(847),
545
562
(
1933
).
48.
H.
Schlichting
,
Boundary-Layer Theory
, 7th ed. (
McGraw-Hill
,
New York
,
1979
).
49.
T. J.
Schmitt
,
Wind-Tunnel Investigation of Air Loads on Human Beings
(
Navy Dept., US Dept of Defense
,
Washington, DC
,
1954
).
You do not currently have access to this content.