We develop and test a modeling approach to quantify turbulence-driven solute transport and mixing in porous media. Our approach addresses two key elements: (a) the spatial variability of the effective diffusion coefficient which is typically documented in the presence of a sediment–fluid interface and (b) the need to provide a model that can yield the complete distribution of the concentration probability density function, not being limited only to the mean concentration value and thus fully addressing solute mixing. Our work is motivated by the importance of solute transport processes in the hyporheic zone, which can have strong implications in natural attenuation of pollutants. Our approach combines Lagrangian schemes to address transport and mixing in the presence of spatial variability of effective diffusion. An exemplary scenario we consider targets a setup constituted by a homogeneous (fully saturated) porous medium underlying a clear water column where turbulent flow is generated. Solute concentration histories obtained through a model based solely on diffusive transport are benchmarked against an analytical solution. These are then compared against the results obtained by modeling the combined effects of diffusion and mixing. A rigorous sensitivity analysis is performed to evaluate the influence of model parameters on solute concentrations and mixing, the latter being quantified in terms of the scalar dissipation rate.

1.
S.
Buss
,
Z.
Cai
,
B.
Cardenas
,
J.
Fleckenstein
,
D.
Hannah
,
K.
Heppell
,
P.
Hulme
,
T.
Ibrahim
,
D.
Kaeser
,
S.
Krause
 et al,
The Hyporheic Handbook: A Handbook on the Groundwater-Surface Water Interface and Hyporheic Zone for Environment Managers
(
Environment Agency
,
2009
), pp. 1–280.
2.
J. L.
Schaper
,
M.
Posselt
,
C.
Bouchez
,
A.
Jaeger
,
G.
Nuetzmann
,
A.
Putschew
,
G.
Singer
, and
J.
Lewandowski
, “
Fate of trace organic compounds in the hyporheic zone: Influence of retardation, the benthic biolayer, and organic carbon
,”
Environ. Sci. Technol.
53
,
4224
4234
(
2019
).
3.
J.
Smith
, “
Groundwater surface water interactions in the hyporheic zone
,” Science Report No. SC030155/SR1
(
Environment Agency,
2005
), pp.
1
209
.
4.
B. L.
O'Connor
and
J. W.
Harvey
, “
Scaling hyporheic exchange and its influence on biogeochemical reactions in aquatic ecosystems
,”
Water Resour. Res.
44
(
12
),
W12423
, (
2008
).
5.
J. M.
Ottino
and
J.
Ottino
,
The Kinematics of Mixing: Stretching, Chaos, and Transport
(
Cambridge University Press
,
1989
), Vol.
3
.
6.
P. de
Anna
,
J.
Jimenez Martinez
,
H.
Tabuteau
,
R.
Turuban
,
T. Le
Borgne
,
M.
Derrien
, and
Y.
Meheust
, “
Mixing and reaction kinetics in porous media: An experimental pore scale quantification
,”
Environ. Sci. Technol.
48
,
508
516
(
2014
).
7.
M.
Dentz
,
T. Le
Borgne
,
A.
Englert
, and
B.
Bijeljic
, “
Mixing, spreading and reaction in heterogeneous media: A brief review
,”
J. Contam. Hydrol.
120–121
,
1
17
(
2011
).
8.
B.
Jha
,
L.
Cueto-Felgueroso
, and
R.
Juanes
, “
Fluid mixing from viscous fingering
,”
Phys. Rev. Lett.
106
,
194502
(
2011
).
9.
T. Le
Borgne
,
M.
Dentz
, and
E.
Villermaux
, “
The lamellar description of mixing in porous media
,”
J. Fluid Mech.
770
,
458
498
(
2015
).
10.
I.
Chandler
,
I.
Guymer
,
J.
Pearson
, and
R.
Van Egmond
, “
Vertical variation of mixing within porous sediment beds below turbulent flows
,”
Water Resour. Res.
52
,
3493
3509
, (
2016
).
11.
M.
Higashino
,
J. J.
Clark
, and
H. G.
Stefan
, “
Pore water flow due to near-bed turbulence and associated solute transfer in a stream or lake sediment bed
,”
Water Resour. Res.
45
,
W12414
, (
2009
).
12.
M. J.
de Lemos
, “
Turbulent kinetic energy distribution across the interface between a porous medium and a clear region
,”
Int. Commun. Heat Mass Transfer
32
,
107
115
(
2005
).
13.
K.
Roche
,
A.
Li
,
D.
Bolster
,
G.
Wagner
, and
A.
Packman
, “
Effects of turbulent hyporheic mixing on reach-scale transport
,”
Water Resour. Res.
55
,
3780
3795
, (
2019
).
14.
M. M.
Nezhad
,
M.
Rezania
, and
E.
Baioni
, “
Transport in porous media with nonlinear flow condition
,”
Transp. Porous Media
126
,
5
22
(
2019
).
15.
C.
Zhang
,
Y.
She
,
Y.
Hu
,
Z.
Li
,
W.
Wang
,
A.
Patmonoaji
, and
T.
Suekane
, “
Experimental investigation of solute transport in variably saturated porous media using x-ray computed tomography
,”
Phys. Fluids
33
,
076610
(
2021
).
16.
B.
Ling
,
C.
Rizzo
,
I.
Battiato
, and
F.
de Barros
, “
Macroscale transport in channel-matrix systems via integral transforms
,”
Phys. Rev. Fluids
6
,
044501
(
2021
).
17.
J. S.
Kim
and
P. K.
Kang
, “
Anomalous transport through free-flow-porous media interface: Pore-scale simulation and predictive modeling
,”
Adv. Water Resour.
135
,
103467
(
2020
).
18.
K. E.
Bencala
, “
Simulation of solute transport in a mountain pool-and-riffle stream with a kinetic mass transfer model for sorption
,”
Water Resour. Res.
19
,
732
738
, (
1983
).
19.
D. R.
Hart
, “
Parameter estimation and stochastic interpretation of the transient storage model for solute transport in streams
,”
Water Resour. Res.
31
,
323
328
, (
1995
).
20.
F. J.
Triska
,
V. C.
Kennedy
,
R. J.
Avanzino
,
G. W.
Zellweger
, and
K. E.
Bencala
, “
Retention and transport of nutrients in a third-order stream in Northwestern California: Hyporheic processes
,”
Ecology
70
,
1893
1905
(
1989
).
21.
A.
Wörman
, “
Comparison of models for transient storage of solutes in small streams
,”
Water Resour. Res.
36
,
455
468
, (
2000
).
22.
A. H.
Elliott
and
N. H.
Brooks
, “
Transfer of nonsorbing solutes to a streambed with bed forms: Theory
,”
Water Resour. Res.
33
,
123
136
, (
1997
).
23.
A. I.
Packman
and
N. H.
Brooks
, “
Hyporheic exchange of solutes and colloids with moving bed forms
,”
Water Resour. Res.
37
,
2591
2605
, (
2001
).
24.
A. I.
Packman
,
N. H.
Brooks
, and
J. J.
Morgan
, “
A physicochemical model for colloid exchange between a stream and a sand streambed with bed forms
,”
Water Resour. Res.
36
,
2351
2361
, (
2000
).
25.
J. S.
Fries
, “
Predicting interfacial diffusion coefficients for fluxes across the sediment-water interface
,”
J. Hydraul. Eng.
133
,
267
272
(
2007
).
26.
J. Y.
Leung
and
S.
Srinivasan
, “
Effects of reservoir heterogeneity on scaling of effective mass transfer coefficient for solute transport
,”
J. Contam. Hydrol.
192
,
181
193
(
2016
).
27.
F. J.
Valdés-Parada
,
J. A.
Ochoa-Tapia
, and
J.
Alvarez-Ramirez
, “
Diffusive mass transport in the fluid–porous medium inter-region: Closure problem solution for the one-domain approach
,”
Chem. Eng. Sci.
62
,
6054
6068
(
2007
).
28.
A.
Lejay
and
G.
Pichot
, “
Simulating diffusion processes in discontinuous media: A numerical scheme with constant time steps
,”
J. Comput. Phys.
231
,
7299
7314
(
2012
).
29.
D. W.
Meyer
, “
On the modeling of molecular mixing in turbulent flows
,” Ph.D. thesis (
ETH Zurich
,
2008
).
30.
C.
Zhang
,
K.
Kaito
,
Y.
Hu
,
A.
Patmonoaji
,
S.
Matsushita
, and
T.
Suekane
, “
Influence of stagnant zones on solute transport in heterogeneous porous media at the pore scale
,”
Phys. Fluids
33
,
036605
(
2021
).
31.
K.
Itô
and
P.
Henry
, Jr.
 et al,
Diffusion Processes and Their Sample Paths
(
Springer Science and Business Media
,
2012
).
32.
J. B.
Walsh
, “
A diffusion with a discontinuous local time
,”
Astérisque
52
,
37
45
(
1978
); available at http://www.numdam.org/item/AST_1978__52-53__37_0/.
33.
A.
Lejay
 et al, “
On the constructions of the skew Brownian motion
,”
Probab. Surv.
3
,
413
466
(
2006
).
34.
A.
Lejay
and
G.
Pichot
, “
Simulating diffusion processes in discontinuous media: Benchmark tests
,”
J. Comput. Phys.
314
,
384
413
(
2016
).
35.
D. W.
Meyer
and
P.
Jenny
, “
Micromixing models for turbulent flows
,”
J. Comput. Phys.
228
,
1275
1293
(
2009
).
36.
R. O.
Fox
, “
The Fokker-Planck closure for turbulent molecular mixing: Passive scalars
,”
Phys. Fluids A: Fluid Dyn.
4
,
1230
1244
(
1992
).
37.
N.
Peters
and
P.
Trouillet
, “
On the role of quasi-one-dimensional dissipation layers in turbulent scalar mixing
,”
Annu. Res. Briefs
2002
,
27
40
.
38.
L.
Wang
and
N.
Peters
, “
The length-scale distribution function of the distance between extremal points in passive scalar turbulence
,”
J. Fluid Mech.
554
,
457
(
2006
).
39.
S. B.
Pope
, “
PDF methods for turbulent reactive flows
,”
Prog. Energy Combust. Sci.
11
,
119
192
(
1985
).
40.
R. O.
Fox
,
Computational Models for Turbulent Reacting Flows
(
Cambridge University Press
,
2003
).
41.
I.
Chandler
, “
Vertical variation in diffusion coefficient within sediments
,” Ph.D. thesis (
University of Warwick
,
2012
).
42.
E.
Baioni
,
G.
Porta
,
M. M.
Nezhad
, and
A.
Guadagnini
, “
Assessment of turbulence effects on effective solute diffusivity close to a sediment-free fluid interface
,”
Stochastic Environ. Res. Risk Assess.
34
,
2211
2228
(
2020
).
43.
S.
Subramaniam
and
S.
Pope
, “
A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees
,”
Combust. Flame
115
,
487
514
(
1998
).
44.
T. L.
Borgne
,
M.
Dentz
,
D.
Bolster
,
J.
Carrera
,
J. D.
Dreuzy
, and
P.
Davy
, “
Non-Fickian mixing: Temporal evolution of the scalar dissipation rate in heterogeneous porous media
,”
Adv. Water Resour.
33
,
1468
1475
(
2010
).
45.
A.
Dell'Oca
,
M.
Riva
, and
A.
Guadagnini
, “
Moment-based metrics for global sensitivity analysis of hydrological systems
,”
Hydrol. Earth Syst. Sci.
21
,
6219
(
2017
).
You do not currently have access to this content.