This paper concerns implicit large eddy simulations of subsonic flows through a symmetric suddenly expanded channel. We aim at shedding light on the flow physics at a relatively high Reynolds number of 10 000, based on the inlet bulk velocity and the step height of the channel, and examine the compressibility effects for two Mach numbers, Ma =0.1 and Ma =0.5. Comparisons with experimental measurements are provided. In addition, we investigate the structure of the separated regions, turbulence structures—through the Reynolds stress anisotropy componentality—and turbulence kinetic energy budgets. The results reveal that compressibility influences particular flow physics.

1.
D.
Drikakis
, “
Bifurcation phenomena in incompressible sudden expansion flows
,”
Phys. Fluids
9
,
76
87
(
1997
).
2.
R.
Wille
and
H.
Fernholz
, “
Report on the first European mechanics colloquium, on the Coanda effect
,”
J. Fluid Mech.
23
,
801
819
(
1965
).
3.
F.
Durst
,
A.
Melling
, and
J.
Whitelaw
, “
Low Reynolds number flow over a plane symmetric sudden expansion
,”
J. Fluid Mech.
64
,
111
128
(
1974
).
4.
R.
Fearn
,
T.
Mullin
, and
K.
Cliffe
, “
Nonlinear flow phenomena in a symmetric sudden expansion
,”
J. Fluid Mech.
211
,
595
608
(
1990
).
5.
W.
Cherdron
,
F.
Durst
, and
J.
Whitelaw
, “
Asymmetric flows and instabilities in symmetric ducts with sudden expansions
,”
J. Fluid Mech.
84
,
13
31
(
1978
).
6.
N.
Alleborn
,
K.
Nandakumar
,
H.
Raszillier
, and
F.
Durst
, “
Further contributions on the two-dimensional flow in a sudden expansion
,”
J. Fluid Mech.
330
,
169
188
(
1997
).
7.
N.
Moallemi
and
J.
Brinkerhoff
, “
Numerical analysis of laminar and transitional flow in a planar sudden expansion
,”
Comput. Fluids
140
,
209
221
(
2016
).
8.
A.
Zarghami
,
M. J.
Maghrebi
,
S.
Ubertini
, and
S.
Succi
, “
Modeling of bifurcation phenomena in suddenly expanded flows with a new finite volume lattice Boltzmann method
,”
Int. J. Mod. Phys. C
22
,
977
1003
(
2011
).
9.
Y.
Guevel
,
G.
Girault
, and
J.
Cadou
, “
Parametric analysis of steady bifurcations in 2D incompressible viscous flow with high order algorithm
,”
Comput. Fluids
100
,
185
195
(
2014
).
10.
A.
Quaini
,
R.
Glowinski
, and
S.
Čanić
, “
Symmetry breaking and preliminary results about a Hopf bifurcation for incompressible viscous flow in an expansion channel
,”
Int. J. Comput. Fluid Dyn.
30
,
7
19
(
2016
).
11.
T.
Praveen
and
V.
Eswaran
, “
Transition to asymmetric flow in a symmetric sudden expansion: Hydrodynamics and MHD cases
,”
Comput. Fluids
148
,
103
120
(
2017
).
12.
Y.
Tsui
and
H.
Wang
, “
Side-wall effects on the bifurcation of the flow through a sudden expansion
,”
Int. J. Numer. Methods Fluids
56
,
167
184
(
2008
).
13.
E.
Schreck
and
M.
Schafer
, “
Numerical study of bifurcation in three-dimensional sudden channel expansions
,”
Comput. Fluids
29
,
583
593
(
2000
).
14.
D.
Abbott
and
S.
Kline
, “
Experimental investigation of subsonic turbulent flow over single and double backward facing steps
,”
J. Basic Eng.
84
,
317
325
(
1962
).
15.
Y.
Gagnon
,
A.
Giovannini
, and
P.
Hébrard
, “
Numerical simulation and physical analysis of high reynolds number recirculating flows behind sudden expansions
,”
Phys. Fluids A: Fluid Dyn.
5
,
2377
2389
(
1993
).
16.
P. R.
Mehta
, “
Separated flow through large sudden expansions
,”
J. Hydraul. Div.
107
,
451
460
(
1981
).
17.
S.
De Zilwa
,
L.
Khezzar
, and
J.
Whitelaw
, “
Flows through plane sudden-expansions
,”
Int. J. Numer. Methods Fluids
32
,
313
329
(
2000
).
18.
F.
Aloui
and
M.
Souhar
, “
Experimental study of turbulent asymmetric flow in a flat duct symmetric sudden expansion
,”
J. Fluids Eng.
122
,
174
177
(
2000
).
19.
J. E.
Drewry
, “
Fluid dynamic characterization of sudden-expansion ramjet combustor flowfields x
,”
AIAA J.
16
,
313
319
(
1978
).
20.
T.
Emmert
,
P.
Lafon
, and
C.
Bailly
, “
Numerical study of aeroacoustic oscillations in transonic flow downstream a sudden duct enlargement
,” in
12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference)
(
American Institute of Aeronautics and Astronautics
,
Cambridge, Massachusetts
,
2006
), pp.
1
13
.
21.
L.
Casarsa
and
P.
Giannattasio
, “
Three-dimensional features of the turbulent flow through a planar sudden expansion
,”
Phys. Fluids
20
,
015103
(
2008
).
22.
M.
Klein
,
A.
Sadiki
, and
J.
Janicka
, “
A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations
,”
J. Comput. Phys.
186
,
652
665
(
2003
).
23.
E.
Touber
and
N. D.
Sandham
, “
Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble
,”
Theor. Comput. Fluid Dyn.
23
,
79
107
(
2009
).
24.
K.
Iwamoto
,
Y.
Suzuki
, and
N.
Kasagi
, “
Reynolds number effect on wall turbulence: Toward effective feedback control
,”
Int. J. Heat Fluid Flow
23
,
678
689
(
2002
).
25.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
26.
D.
Drikakis
, “
Embedded turbulence model in numerical methods for hyperbolic conservation laws
,”
Int. J. Numer. Methods Fluids
39
,
763
781
(
2002
).
27.
D.
Drikakis
, “
Advances in turbulent flow computations using high-resolution methods
,”
Prog. Aerosp. Sci.
39
,
405
424
(
2003
).
28.
D.
Drikakis
and
S.
Tsangaris
, “
On the solution of the compressible Navier–Stokes equations using improved flux vector splitting methods
,”
Appl. Math. Modell.
17
,
282
297
(
1993
).
29.
A. F. B.
Inok
, “
Investigation of high-order, high-resolution methods for axisymmetric turbulent jet using ILES
,” Ph.D. thesis (
Cranfield University
,
2011
).
30.
E. F.
Toro
,
M.
Spruce
, and
W.
Speares
, “
Restoration of the contact surface in the HLL-Riemann solver
,”
Shock Waves
4
,
25
34
(
1994
).
31.
I. W.
Kokkinakis
,
D.
Drikakis
,
K.
Ritos
, and
S. M.
Spottswood
, “
Direct numerical simulation of supersonic flow and acoustics over a compression ramp
,”
Phys. Fluids
32
,
066107
(
2020
).
32.
D. S.
Balsara
and
C.-W.
Shu
, “
Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy
,”
J. Comput. Phys.
160
,
405
452
(
2000
).
33.
I.
Kokkinakis
and
D.
Drikakis
, “
Implicit large eddy simulation of weakly-compressible turbulent channel flow
,”
Comput. Methods Appl. Mech. Eng.
287
,
229
261
(
2015
).
34.
P.
Tsoutsanis
,
I. W.
Kokkinakis
,
L.
Könözsy
,
D.
Drikakis
,
R. J.
Williams
, and
D. L.
Youngs
, “
Comparison of structured- and unstructured-grid, compressible and incompressible methods using the vortex pairing problem
,”
Comput. Methods Appl. Mech. Eng.
293
,
207
231
(
2015
).
35.
M.
Groom
and
B.
Thornber
, “
A comparative study of high-resolution upwind methods in unsteady low Mach number flows
,” in
22nd Australasian Fluid Mechanics Conference AFMC2020, Proceedings of the Australasian Fluid Mechanics Conference (AFMC)
, edited by
H.
Chanson
and
R.
Brown
(
The University of Queensland
,
Brisbane, Australia
,
2020
).
36.
B.
Thornber
,
A.
Mosedale
,
D.
Drikakis
,
D.
Youngs
, and
R.
Williams
, “
An improved reconstruction method for compressible flows with low Mach number features
,”
J. Comput. Phys.
227
,
4873
4894
(
2008
).
37.
K.
Ritos
,
I. W.
Kokkinakis
, and
D.
Drikakis
, “
Performance of high-order implicit large eddy simulations
,”
Comput. Fluids
173
,
307
312
(
2018
).
38.
R.
Spiteri
and
S.
Ruuth
, “
A new class of optimal high-order strong-stability-preserving time discretization methods
,”
SIAM J. Numer. Anal.
40
,
469
491
(
2002
).
39.
N. J.
Georgiadis
,
D. P.
Rizzetta
, and
C.
Fureby
, “
Large-eddy simulation: Current capabilities, recommended practices, and future research
,”
AIAA J.
48
,
1772
1784
(
2010
).
40.
H.
Choi
and
P.
Moin
, “
Grid-point requirements for large eddy simulation: Chapman's estimates revisited
,”
Phys. Fluids
24
,
011702
(
2012
).
41.
J.
Poggie
,
N. J.
Bisek
, and
R.
Gosse
, “
Resolution effects in compressible, turbulent boundary layer simulations
,”
Comput. Fluids
120
,
57
69
(
2015
).
42.
P.
Spazzini
,
G.
Iuso
,
M.
Onorato
,
N.
Zurlo
, and
G.
Di Cicca
, “
Unsteady behavior of back-facing step flow
,”
Exp. Fluids
30
,
551
561
(
2001
).
43.
M.
Escudier
,
P.
Oliveira
, and
R.
Poole
, “
Turbulent flow through a plane sudden expansion of modest aspect ratio
,”
Phys. Fluids
14
,
3641
3654
(
2002
).
44.
M.
Barri
,
G. K.
El Khoury
,
H. I.
Andersson
, and
B.
Pettersen
, “
DNS of backward-facing step flow with fully turbulent inflow
,”
Int. J. Numer. Methods Fluids
64
,
n/a
792
(
2009
).
45.
G. K.
El Khoury
,
B.
Pettersen
,
H. I.
Andersson
, and
M.
Barri
, “
Asymmetries in an obstructed turbulent channel flow
,”
Phys. Fluids
22
,
095103
(
2010
).
46.
K.
Sugawara
,
H.
Yoshikawa
, and
T.
Ota
, “
LES of turbulent separated flow and heat transfer in a symmetric expansion plane channel
,”
J. Fluids Eng.
127
,
865
871
(
2005
).
47.
S.
Banerjee
,
R.
Krahl
,
F.
Durst
, and
C.
Zenger
, “
Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches
,”
J. Turbul.
8
,
N32
(
2007
).
48.
M.
Emory
and
G.
Iaccarino
,
Visualizing Turbulence Anisotropy in the Spatial Domain with Componentality Contours
, in Center for Turbulence Research, Stanford University, Annual Research Briefs (
Stanford University
,
2014
), pp.
123
138
.
49.
S.
Hoyas
and
J.
Jiménez
, “
Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2003
,”
Phys. Fluids
18
,
011702
(
2006
).
50.
A.
Sideridis
,
K.
Yakinthos
, and
A.
Goulas
, “
Turbulent kinetic energy balance measurements in the wake of a low-pressure turbine blade
,”
Int. J. Heat Fluid Flow
32
,
212
225
(
2011
).
51.
X.
Liu
and
F. O.
Thomas
, “
Measurement of the turbulent kinetic energy budget of a planar wake flow in pressure gradients
,”
Experiments Fluids
37
,
469
482
(
2004
).
52.
N.
Kasagi
and
A.
Matsunaga
, “
Three-dimensional particle-tracking velocimetry measurement of turbulence statistics and energy budget in a backward-facing step flow
,”
Int. J. Heat Fluid Flow
16
,
477
485
(
1995
).
53.
B.
Thornber
and
Y.
Zhou
, “
Energy transfer in the Richtmyer-Meshkov instability
,”
Phys. Rev. E
86
,
056302
(
2012
).
54.
D.
Drikakis
,
C.
Fureby
,
F.
Grinstein
, and
D.
Youngs
, “
Simulation of transition and turbulence decay in the Taylor-Green vortex
,”
J. Turbul.
8
,
N20
12
(
2007
).
55.
B.
Thornber
,
J.
Griffond
,
P.
Bigdelou
,
I.
Boureima
,
P.
Ramaprabhu
,
O.
Schilling
, and
R. J. R.
Williams
, “
Turbulent transport and mixing in the multimode narrowband Richtmyer–Meshkov instability
,”
Phys. Fluids
31
,
096105
(
2019
).
56.
N.
Panchapakesan
and
J.
Lumley
, “
Turbulence measurements in axisymmetric jets of air and helium. Part 1. Air jet
,”
J. Fluid Mech.
246
,
197
223
(
1993
).
57.
H.
Le
,
P.
Moin
, and
J.
Kim
, “
Direct numerical simulation of turbulent flow over a backward-facing step
,”
J. Fluid Mech.
330
,
349
374
(
1997
).
You do not currently have access to this content.