This paper concerns implicit large eddy simulations of subsonic flows through a symmetric suddenly expanded channel. We aim at shedding light on the flow physics at a relatively high Reynolds number of 10 000, based on the inlet bulk velocity and the step height of the channel, and examine the compressibility effects for two Mach numbers, Ma = 0.1 and Ma = 0.5. Comparisons with experimental measurements are provided. In addition, we investigate the structure of the separated regions, turbulence structures—through the Reynolds stress anisotropy componentality—and turbulence kinetic energy budgets. The results reveal that compressibility influences particular flow physics.
References
1.
D.
Drikakis
, “Bifurcation phenomena in incompressible sudden expansion flows
,” Phys. Fluids
9
, 76
–87
(1997
).2.
R.
Wille
and H.
Fernholz
, “Report on the first European mechanics colloquium, on the Coanda effect
,” J. Fluid Mech.
23
, 801
–819
(1965
).3.
F.
Durst
, A.
Melling
, and J.
Whitelaw
, “Low Reynolds number flow over a plane symmetric sudden expansion
,” J. Fluid Mech.
64
, 111
–128
(1974
).4.
R.
Fearn
, T.
Mullin
, and K.
Cliffe
, “Nonlinear flow phenomena in a symmetric sudden expansion
,” J. Fluid Mech.
211
, 595
–608
(1990
).5.
W.
Cherdron
, F.
Durst
, and J.
Whitelaw
, “Asymmetric flows and instabilities in symmetric ducts with sudden expansions
,” J. Fluid Mech.
84
, 13
–31
(1978
).6.
N.
Alleborn
, K.
Nandakumar
, H.
Raszillier
, and F.
Durst
, “Further contributions on the two-dimensional flow in a sudden expansion
,” J. Fluid Mech.
330
, 169
–188
(1997
).7.
N.
Moallemi
and J.
Brinkerhoff
, “Numerical analysis of laminar and transitional flow in a planar sudden expansion
,” Comput. Fluids
140
, 209
–221
(2016
).8.
A.
Zarghami
, M. J.
Maghrebi
, S.
Ubertini
, and S.
Succi
, “Modeling of bifurcation phenomena in suddenly expanded flows with a new finite volume lattice Boltzmann method
,” Int. J. Mod. Phys. C
22
, 977
–1003
(2011
).9.
Y.
Guevel
, G.
Girault
, and J.
Cadou
, “Parametric analysis of steady bifurcations in 2D incompressible viscous flow with high order algorithm
,” Comput. Fluids
100
, 185
–195
(2014
).10.
A.
Quaini
, R.
Glowinski
, and S.
Čanić
, “Symmetry breaking and preliminary results about a Hopf bifurcation for incompressible viscous flow in an expansion channel
,” Int. J. Comput. Fluid Dyn.
30
, 7
–19
(2016
).11.
T.
Praveen
and V.
Eswaran
, “Transition to asymmetric flow in a symmetric sudden expansion: Hydrodynamics and MHD cases
,” Comput. Fluids
148
, 103
–120
(2017
).12.
Y.
Tsui
and H.
Wang
, “Side-wall effects on the bifurcation of the flow through a sudden expansion
,” Int. J. Numer. Methods Fluids
56
, 167
–184
(2008
).13.
E.
Schreck
and M.
Schafer
, “Numerical study of bifurcation in three-dimensional sudden channel expansions
,” Comput. Fluids
29
, 583
–593
(2000
).14.
D.
Abbott
and S.
Kline
, “Experimental investigation of subsonic turbulent flow over single and double backward facing steps
,” J. Basic Eng.
84
, 317
–325
(1962
).15.
Y.
Gagnon
, A.
Giovannini
, and P.
Hébrard
, “Numerical simulation and physical analysis of high reynolds number recirculating flows behind sudden expansions
,” Phys. Fluids A: Fluid Dyn.
5
, 2377
–2389
(1993
).16.
P. R.
Mehta
, “Separated flow through large sudden expansions
,” J. Hydraul. Div.
107
, 451
–460
(1981
).17.
S.
De Zilwa
, L.
Khezzar
, and J.
Whitelaw
, “Flows through plane sudden-expansions
,” Int. J. Numer. Methods Fluids
32
, 313
–329
(2000
).18.
F.
Aloui
and M.
Souhar
, “Experimental study of turbulent asymmetric flow in a flat duct symmetric sudden expansion
,” J. Fluids Eng.
122
, 174
–177
(2000
).19.
J. E.
Drewry
, “Fluid dynamic characterization of sudden-expansion ramjet combustor flowfields x
,” AIAA J.
16
, 313
–319
(1978
).20.
T.
Emmert
, P.
Lafon
, and C.
Bailly
, “Numerical study of aeroacoustic oscillations in transonic flow downstream a sudden duct enlargement
,” in 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference)
(American Institute of Aeronautics and Astronautics
, Cambridge, Massachusetts
, 2006
), pp. 1
–13
.21.
L.
Casarsa
and P.
Giannattasio
, “Three-dimensional features of the turbulent flow through a planar sudden expansion
,” Phys. Fluids
20
, 015103
(2008
).22.
M.
Klein
, A.
Sadiki
, and J.
Janicka
, “A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations
,” J. Comput. Phys.
186
, 652
–665
(2003
).23.
E.
Touber
and N. D.
Sandham
, “Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble
,” Theor. Comput. Fluid Dyn.
23
, 79
–107
(2009
).24.
K.
Iwamoto
, Y.
Suzuki
, and N.
Kasagi
, “Reynolds number effect on wall turbulence: Toward effective feedback control
,” Int. J. Heat Fluid Flow
23
, 678
–689
(2002
).25.
26.
D.
Drikakis
, “Embedded turbulence model in numerical methods for hyperbolic conservation laws
,” Int. J. Numer. Methods Fluids
39
, 763
–781
(2002
).27.
D.
Drikakis
, “Advances in turbulent flow computations using high-resolution methods
,” Prog. Aerosp. Sci.
39
, 405
–424
(2003
).28.
D.
Drikakis
and S.
Tsangaris
, “On the solution of the compressible Navier–Stokes equations using improved flux vector splitting methods
,” Appl. Math. Modell.
17
, 282
–297
(1993
).29.
A. F. B.
Inok
, “Investigation of high-order, high-resolution methods for axisymmetric turbulent jet using ILES
,” Ph.D. thesis (Cranfield University
, 2011
).30.
E. F.
Toro
, M.
Spruce
, and W.
Speares
, “Restoration of the contact surface in the HLL-Riemann solver
,” Shock Waves
4
, 25
–34
(1994
).31.
I. W.
Kokkinakis
, D.
Drikakis
, K.
Ritos
, and S. M.
Spottswood
, “Direct numerical simulation of supersonic flow and acoustics over a compression ramp
,” Phys. Fluids
32
, 066107
(2020
).32.
D. S.
Balsara
and C.-W.
Shu
, “Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy
,” J. Comput. Phys.
160
, 405
–452
(2000
).33.
I.
Kokkinakis
and D.
Drikakis
, “Implicit large eddy simulation of weakly-compressible turbulent channel flow
,” Comput. Methods Appl. Mech. Eng.
287
, 229
–261
(2015
).34.
P.
Tsoutsanis
, I. W.
Kokkinakis
, L.
Könözsy
, D.
Drikakis
, R. J.
Williams
, and D. L.
Youngs
, “Comparison of structured- and unstructured-grid, compressible and incompressible methods using the vortex pairing problem
,” Comput. Methods Appl. Mech. Eng.
293
, 207
–231
(2015
).35.
M.
Groom
and B.
Thornber
, “A comparative study of high-resolution upwind methods in unsteady low Mach number flows
,” in 22nd Australasian Fluid Mechanics Conference AFMC2020, Proceedings of the Australasian Fluid Mechanics Conference (AFMC)
, edited by H.
Chanson
and R.
Brown
(The University of Queensland
, Brisbane, Australia
, 2020
).36.
B.
Thornber
, A.
Mosedale
, D.
Drikakis
, D.
Youngs
, and R.
Williams
, “An improved reconstruction method for compressible flows with low Mach number features
,” J. Comput. Phys.
227
, 4873
–4894
(2008
).37.
K.
Ritos
, I. W.
Kokkinakis
, and D.
Drikakis
, “Performance of high-order implicit large eddy simulations
,” Comput. Fluids
173
, 307
–312
(2018
).38.
R.
Spiteri
and S.
Ruuth
, “A new class of optimal high-order strong-stability-preserving time discretization methods
,” SIAM J. Numer. Anal.
40
, 469
–491
(2002
).39.
N. J.
Georgiadis
, D. P.
Rizzetta
, and C.
Fureby
, “Large-eddy simulation: Current capabilities, recommended practices, and future research
,” AIAA J.
48
, 1772
–1784
(2010
).40.
H.
Choi
and P.
Moin
, “Grid-point requirements for large eddy simulation: Chapman's estimates revisited
,” Phys. Fluids
24
, 011702
(2012
).41.
J.
Poggie
, N. J.
Bisek
, and R.
Gosse
, “Resolution effects in compressible, turbulent boundary layer simulations
,” Comput. Fluids
120
, 57
–69
(2015
).42.
P.
Spazzini
, G.
Iuso
, M.
Onorato
, N.
Zurlo
, and G.
Di Cicca
, “Unsteady behavior of back-facing step flow
,” Exp. Fluids
30
, 551
–561
(2001
).43.
M.
Escudier
, P.
Oliveira
, and R.
Poole
, “Turbulent flow through a plane sudden expansion of modest aspect ratio
,” Phys. Fluids
14
, 3641
–3654
(2002
).44.
M.
Barri
, G. K.
El Khoury
, H. I.
Andersson
, and B.
Pettersen
, “DNS of backward-facing step flow with fully turbulent inflow
,” Int. J. Numer. Methods Fluids
64
, n/a
–792
(2009
).45.
G. K.
El Khoury
, B.
Pettersen
, H. I.
Andersson
, and M.
Barri
, “Asymmetries in an obstructed turbulent channel flow
,” Phys. Fluids
22
, 095103
(2010
).46.
K.
Sugawara
, H.
Yoshikawa
, and T.
Ota
, “LES of turbulent separated flow and heat transfer in a symmetric expansion plane channel
,” J. Fluids Eng.
127
, 865
–871
(2005
).47.
S.
Banerjee
, R.
Krahl
, F.
Durst
, and C.
Zenger
, “Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches
,” J. Turbul.
8
, N32
(2007
).48.
M.
Emory
and G.
Iaccarino
, Visualizing Turbulence Anisotropy in the Spatial Domain with Componentality Contours
, in Center for Turbulence Research, Stanford University, Annual Research Briefs (Stanford University
, 2014
), pp. 123
–138
.49.
S.
Hoyas
and J.
Jiménez
, “Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2003
,” Phys. Fluids
18
, 011702
(2006
).50.
A.
Sideridis
, K.
Yakinthos
, and A.
Goulas
, “Turbulent kinetic energy balance measurements in the wake of a low-pressure turbine blade
,” Int. J. Heat Fluid Flow
32
, 212
–225
(2011
).51.
X.
Liu
and F. O.
Thomas
, “Measurement of the turbulent kinetic energy budget of a planar wake flow in pressure gradients
,” Experiments Fluids
37
, 469
–482
(2004
).52.
N.
Kasagi
and A.
Matsunaga
, “Three-dimensional particle-tracking velocimetry measurement of turbulence statistics and energy budget in a backward-facing step flow
,” Int. J. Heat Fluid Flow
16
, 477
–485
(1995
).53.
B.
Thornber
and Y.
Zhou
, “Energy transfer in the Richtmyer-Meshkov instability
,” Phys. Rev. E
86
, 056302
(2012
).54.
D.
Drikakis
, C.
Fureby
, F.
Grinstein
, and D.
Youngs
, “Simulation of transition and turbulence decay in the Taylor-Green vortex
,” J. Turbul.
8
, N20
–12
(2007
).55.
B.
Thornber
, J.
Griffond
, P.
Bigdelou
, I.
Boureima
, P.
Ramaprabhu
, O.
Schilling
, and R. J. R.
Williams
, “Turbulent transport and mixing in the multimode narrowband Richtmyer–Meshkov instability
,” Phys. Fluids
31
, 096105
(2019
).56.
N.
Panchapakesan
and J.
Lumley
, “Turbulence measurements in axisymmetric jets of air and helium. Part 1. Air jet
,” J. Fluid Mech.
246
, 197
–223
(1993
).57.
H.
Le
, P.
Moin
, and J.
Kim
, “Direct numerical simulation of turbulent flow over a backward-facing step
,” J. Fluid Mech.
330
, 349
–374
(1997
).© 2021 Author(s). Published under an exclusive license by AIP Publishing.
2021
Author(s)
You do not currently have access to this content.