We study experimentally the formation of millimeter-sized oil-coated bubbles at a customized co-axial orifice system and the pinch-off dynamics of the oil column attached below the rising gas bubble. After the gas bubble detaches from the inner orifice, it rises under buoyancy and stretches the oil column to cause pinch-off, forming an oil-coated bubble, with the oil fraction set by the pinch-off location. We show that this pinch-off location is dominated by the size ratio of the gas bubble/oil tail to the outer orifice, and a theoretical model is proposed to predict the oil fraction, describing the experimental results well. Our findings provide potential guidelines for the controllable generation of compound multiphase bubbles using co-axial orifices.

1.
R. E.
Johnson
and
S. S.
Sadhal
, “
Fluid mechanics of compound multiphase drops and bubbles
,”
Annu. Rev. Fluid Mech.
17
(
1
),
289
320
(
1985
).
2.
S. S.
Sadhal
,
P. S.
Ayyaswamy
, and
J. N.
Chung
,
Transport Phenomena with Drops and Bubbles
(
Springer Science & Business Media
,
2012
).
3.
C.
Johansen
,
A. C.
Todd
, and
I. R.
MacDonald
, “
Time series video analysis of bubble release processes at natural hydrocarbon seeps in the northern Gulf of Mexico
,”
Mar. Pet. Geol.
82
,
21
34
(
2017
).
4.
T. S.
Emery
,
P. A.
Raghupathi
, and
S. G.
Kandlikar
, “
Bubble growth inside an evaporating liquid droplet introduced in an immiscible superheated liquid
,”
Int. J. Heat Mass Transfer
127
,
313
321
(
2018
).
5.
A. A.
Kulkarni
and
V. V.
Ranade
, “
Direct contact heat transfer via injecting volatile liquid in a hot liquid pool: Generation and motion of bubbles
,”
Chem. Eng. Sci.
100
,
421
432
(
2013
).
6.
G. R.
Moore
, “
Vaporization of superheated drops in liquids
,”
AIChE J.
5
(
4
),
458
466
(
1959
).
7.
C. W.
Visser
,
D. N.
Amato
,
J.
Mueller
, and
J. A.
Lewis
, “
Architected polymer foams via direct bubble writing
,”
Adv. Mater.
31
(
46
),
1904668
(
2019
).
8.
S.
Zhu
,
A.
Kherbeche
,
Y.
Feng
, and
M. J.
Thoraval
, “
Impact of an air-in-liquid compound drop onto a liquid surface
,”
Phys. Fluids
32
(
4
),
041705
(
2020
).
9.
Y.
Wei
and
M. J.
Thoraval
, “
Maximum spreading of an impacting air-in-liquid compound drop
,”
Phys. Fluids
33
,
061703
(
2021
).
10.
S.
Tasoglu
,
G.
Kaynak
,
A. J.
Szeri
,
U.
Demirci
, and
M.
Muradoglu
, “
Impact of a compound droplet on a flat surface: A model for single cell epitaxy
,”
Phys. Fluids
22
(
8
),
082103
(
2010
).
11.
Y. H.
Mori
, “
Configurations of gas-liquid two-phase bubbles in immiscible liquid media
,”
Int. J. Multiphase Flow
4
(
4
),
383
396
(
1978
).
12.
F.
Zhou
,
L.
Wang
,
Z.
Xu
,
Q.
Liu
,
M.
Deng
, and
R.
Chi
, “
Application of reactive oily bubbles to bastnaesite flotation
,”
Miner. Eng.
64
,
139
145
(
2014
).
13.
L.
Su
,
Z.
Xu
, and
J.
Masliyah
, “
Role of oily bubbles in enhancing bitumen flotation
,”
Miner. Eng.
19
(
6–8
),
641
650
(
2006
).
14.
D. C.
Blanchard
, “
Sea-to-air transport of surface active material
,”
Science
146
(
3642
),
396
397
(
1964
).
15.
D. C.
Blanchard
, “
The ejection of drops from the sea and their enrichment with bacteria and other materials: A review
,”
Estuaries
12
(
3
),
127
137
(
1989
).
16.
D. C.
Blanchard
, “
Bubble scavenging and the water-to-air transfer of organic material in the sea
,”
Appl. Chem. Protein Interfaces
18
,
360
387
(
1975
).
17.
P. L.
Walls
,
J. C.
Bird
, and
L.
Bourouiba
, “
Moving with bubbles: A review of the interactions between bubbles and the microorganisms that surround them
,”
Am. Zool.
54
(
6
),
1014
1025
(
2014
); available at https://pubmed.ncbi.nlm.nih.gov/25096288/.
18.
F. S.
Ehrenhauser
,
P.
Avij
,
X.
Shu
,
V.
Dugas
,
I.
Woodson
,
T.
Liyana-Arachchi
,
Z.
Zhang
,
F. R.
Hung
, and
K. T.
Valsaraj
, “
Bubble bursting as an aerosol generation mechanism during an oil spill in the deep-sea environment: Laboratory experimental demonstration of the transport pathway
,”
Environ. Sci.: Processes Impacts
16
(
1
),
65
73
(
2014
).
19.
A. A.
Kulkarni
and
J. B.
Joshi
, “
Bubble formation and bubble rise velocity in gas-liquid systems: A review
,”
Ind. Eng. Chem. Res.
44
(
16
),
5873
5931
(
2005
).
20.
H.
Tsuge
and
H.
Shin-Ichi
, “
Bubble formation from an orifice submerged in liquids
,”
Chem. Eng. Commun.
22
(
1–2
),
63
79
(
1983
).
21.
I.
Chakraborty
,
B.
Ray
,
G.
Biswas
,
F.
Durst
,
A.
Sharma
, and
P. S.
Ghoshdastidar
, “
Computational investigation on bubble detachment from submerged orifice in quiescent liquid under normal and reduced gravity
,”
Phys. Fluids
21
(
6
),
062103
(
2009
).
22.
T. X. X.
Tate
, “
On the magnitude of a drop of liquid formed under different circumstances
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
27
(
181
),
176
180
(
1864
).
23.
Y.
Zhou
,
B.
Ji
,
X.
Yan
,
P.
Jin
,
J.
Li
, and
N.
Miljkovic
, “
Asymmetric bubble formation at rectangular orifices
,”
Langmuir
37
(
14
),
4302
4307
(
2021
).
24.
Y.
Zhou
,
B.
Ji
,
C.
Zhao
, and
H.
Bo
, “
Bubble formation from a submerged orifice in a thin liquid layer: Detachment and bursting
,”
Phys. Fluids
33
(
1
),
013305
(
2021
).
25.
S.
Wang
,
Y.
Zhang
,
J. C.
Meredith
,
S. H.
Behrens
,
M. K.
Tripathi
, and
K. C.
Sahu
, “
The dynamics of rising oil-coated bubbles: Experiments and simulations
,”
Soft matter
14
(
14
),
2724
2734
(
2018
).
26.
B.
Ji
,
Z.
Yang
, and
J.
Feng
, “
Oil-coated bubble formation from submerged coaxial orifices
,”
Phys. Rev. Fluids
6
(
3
),
033602
(
2021
).
27.
A.
Akbari
and
J. H.
Reghan
, “
Liquid-bridge stability and breakup on surfaces with contact-angle hysteresis
,”
Soft Matter
12
(
32
),
6868
6882
(
2016
).
28.
J. M.
Montanero
and
P.
Alberto
, “
Review on the dynamics of isothermal liquid bridges
,”
Appl. Mech. Rev.
72
(
1
),
010803
(
2020
).
29.
Y.-J.
Chen
and
P. H.
Steen
, “
Dynamics of inviscid capillary breakup: Collapse and pinchoff of a film bridge
,”
J. Fluid Mech.
341
,
245
267
(
1997
).
30.
X.
Zhang
,
R. S.
Padgett
, and
O. A.
Basaran
, “
Nonlinear deformation and breakup of stretching liquid bridges
,”
J. Fluid Mech.
329
,
207
245
(
1996
).
31.
S. J.
Kim
,
J.
Hasanyan
,
B. J.
Gemmell
,
S.
Lee
, and
S.
Jung
, “
Dynamic criteria of plankton jumping out of water
,”
J. R. Soc. Interface
12.111
,
20150582
(
2015
).
32.
O. E.
Yildirim
and
O. A.
Basaran
, “
Deformation and breakup of stretching bridges of Newtonian and shear-thinning liquids: Comparison of one-and two-dimensional models
,”
Chem. Eng. Sci.
56
(
1
),
211
233
(
2001
).
33.
S. J.
Kim
,
S.
Kim
, and
S.
Jung
, “
Extremes of the pinch-off location and time in a liquid column by an accelerating solid sphere
,”
Phys. Rev. Fluids
3
,
084001
(
2018
).
34.
S.
Jung
, “
Pinch-off dynamics to elucidate animal lapping
,”
Phys. Rev. Fluids
6
,
073102
(
2021
).
35.
J.
Ma
,
J.
Li
,
P.
Zhou
,
Y.
Song
,
L.
Chai
, and
C. Q.
Zhou
, “
A viewpoint on the dynamics of bubble formation from a submerged nozzle
,”
Eur. J. Mech.-B
78
,
276
283
(
2019
).
You do not currently have access to this content.