Air purifiers are limited to small polluting airborne particles and poor air circulation (fan) for bringing airborne particles inside the device. Thus, the optimal utility of domestic air purifiers (DAPs) for eliminating airborne viruses is still ambiguous. This paper addresses the above limitations using computational fluid dynamics modeling and simulations to investigate the optimal local design of a DAP in an indoor space. We also investigate the integrated fan system and the local transport of airborne viruses. Three different scenarios of using standard DAP equipment ( 144 m 3 / h) are explored in an indoor space comprising a furnished living room 6 × 6 × 2.5 m 3. We show that the local positioning of a purifier indoors and the fan system embedded inside it can significantly alter the indoor airborne virus transmission risk. Finally, we propose a new indoor air circulation system that better ensures indoor airborne viruses' local orientation more efficiently than a fan embedded in a standard DAP.

1.
M.
Pan
,
J. A.
Lednicky
, and
Y. C.
Wu
, “
Collection, particle sizing and detection of airborne viruses
,”
J. Appl. Microbiol.
127
,
1596
1611
(
2019
).
2.
T.
Dbouk
and
D.
Drikakis
, “
On coughing and airborne droplet transmission to humans
,”
Phys. Fluids
32
,
053310
(
2020
).
3.
T.
Dbouk
and
D.
Drikakis
, “
On respiratory droplets and face masks
,”
Phys. Fluids
32
,
063303
(
2020
).
4.
T.
Dbouk
and
D.
Drikakis
, “
Weather impact on airborne coronavirus survival
,”
Phys. Fluids
32
,
093312
(
2020
).
5.
T.
Dbouk
and
D.
Drikakis
, “
On airborne virus transmission in elevators and confined spaces
,”
Phys. Fluids
33
,
011905
(
2021
).
6.
T.
Dbouk
and
D.
Drikakis
, “
On pollen and airborne virus transmission
,”
Phys. Fluids
32
,
063313
(
2020
).
7.
C.
Van Rijn
,
G. A.
Somsen
,
L.
Hofstra
,
G.
Dahhan
,
R. A.
Bem
,
S.
Kooij
, and
D.
Bonn
, “
Reducing aerosol transmission of SARS-CoV-2 in hospital elevators
,”
Indoor Air
30
,
1065
1066
(
2020
).
8.
M. K.
Satheesan
,
K. W.
Mui
, and
L. T.
Wong
, “
A numerical study of ventilation strategies for infection risk mitigation in general inpatient wards
,”
Build. Simul.
13
,
887
896
(
2020
).
9.
E.
Katramiz
,
D.
Al Assaad
,
N.
Ghaddar
, and
K.
Ghali
, “
The effect of human breathing on the effectiveness of intermittent personalized ventilation coupled with mixing ventilation
,”
Build. Environ.
174
,
106755
(
2020
).
10.
E.
Katramiz
,
N.
Ghaddar
,
K.
Ghali
,
D.
Al-Assaad
, and
S.
Ghani
, “
Effect of individually controlled personalized ventilation on cross-contamination due to respiratory activities
,”
Build. Environ.
194
,
107719
(
2021
).
11.
S.
Shao
,
D.
Zhou
,
R.
He
,
S. Z. J.
Li
,
K.
Mallery
,
S.
Kumar
,
S.
Yang
, and
J.
Hong
, “
Risk assessment of airborne transmission of COVID-19 by asymptomatic individuals under different practical settings
,”
J. Aerosol Sci.
151
,
105661
(
2021
).
12.
M.
Hu
,
H.
Lin
,
J.
Wang
,
C.
Xu
,
A. J.
Tatem
,
B.
Meng
,
X.
Zhang
,
Y.
Liu
,
P.
Wang
,
G.
Wu
,
H.
Xie
, and
S.
Lai
, “
Risk of coronavirus disease 2019 transmission in train passengers: An epidemiological and modeling study
,”
Clin. Infect. Dis.
72
,
604
(
2021
).
13.
M.
Abuhegazy
,
K.
Talaat
,
O.
Anderoglu
, and
S. V.
Poroseva
, “
Numerical investigation of aerosol transport in a classroom with relevance to COVID-19
,”
Phys. Fluids
32
,
103311
(
2020
).
14.
T.
Dbouk
and
D.
Drikakis
, “
Fluid dynamics and epidemiology: Seasonality and transmission dynamics
,”
Phys. Fluids
33
,
021901
(
2021
).
15.
T.
Dbouk
and
D.
Drikakis
, “
Correcting pandemic data analysis through environmental fluid dynamics
,”
Phys. Fluids
33
,
067116
(
2021
).
16.
K.
Chan
,
J.
Peiris
,
S.
Lam
,
L.
Poon
,
K.
Yuen
, and
W.
Seto
, “
The effects of temperature and relative humidity on the viability of the sars coronavirus
,”
Adv. Virol.
2011
,
734690
.
17.
J. C. T.
Lim
and
B.
Kim
, “
Predictions and measurements of the stack effect on indoor airborne virus transmission in a high-rise hospital building
,”
Build. Environ.
46
,
2413
2424
(
2011
).
18.
B.
Rowe
,
A.
Canosa
,
J.
Drouffe
, and
J.
Mitchell
, “
Simple quantitative assessment of the outdoor versus indoor airborne transmission of viruses and COVID-19
,”
Environ. Res.
198
,
111189
(
2021
).
19.
Y.
Shui
,
M.
Yuanliang
,
Z.
Guojuan
,
W.
Wei
, and
F.
Guohui
, “
Numerical simulation study on location optimization of indoor air purifiers in bedroom
,”
Procedia Eng.
205
,
849
855
(
2017
).
20.
H.
Jasak
, “
Openfoam: Open source cfd in research and industry
,”
Int. J. Naval Archit. Ocean Eng.
1
,
89
94
(
2009
).
21.
F.
Moukalled
,
L.
Mangani
, and
M.
Darwish
,
The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM and Matlab
, 1st ed. (
Springer Publishing Company
, Incorporated,
2015
).
22.
W.
Sutherland
, “
The viscosity of gases and molecular force
,”
Philos. Mag.
36
,
507
531
(
1893
).
23.
J. H.
Ferziger
and
M.
Peric
,
Computational Methods for Fluid Dynamics
(
Springer
,
1999
).
24.
F. R.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
,
1598
1605
(
1994
).
25.
D. C.
Wilcox
,
Turbulence Modeling for CFD
(
DCW Industries
, Incorporated,
2007
).
26.
I. B.
Celik
,
U.
Ghia
,
P. J.
Roache
, and
C. J.
Freitas
, “
Procedure for estimation and reporting of uncertainty due to discretization in CFD applications
,”
J. Fluids Eng.
130
,
078001
(
2008
).
You do not currently have access to this content.