The motion of Brownian particles in nonlinear baths, such as, e.g., viscoelastic fluids, is of great interest. We theoretically study a simple model for such a bath, where two particles are coupled via a sinusoidal potential. This model, which is an extension of the famous Prandtl–Tomlinson model, has been found to reproduce some aspects of recent experiments, such as shear-thinning and position oscillations [R. Jain et al., “Two step micro-rheological behavior in a viscoelastic fluid,” J. Chem. Phys. 154, 184904 (2021)]. Analyzing this model in detail, we show that the predicted behavior of position oscillations agrees qualitatively with experimentally observed trends; (i) oscillations appear only in a certain regime of velocity and trap stiffness of the confining potential, and (ii), the amplitude and frequency of oscillations increase with driving velocity, the latter in a linear fashion. Increasing the potential barrier height of the model yields a rupture transition as a function of driving velocity, where the system abruptly changes from a mildly driven state to a strongly driven state. The frequency of oscillations scales as (v0v0*)1/2 near the rupture velocity v0*, found for infinite trap stiffness. Investigating the (micro-)viscosity for different parameter ranges, we note that position oscillations leave their signature by an additional (mild) plateau in the flow curves, suggesting that oscillations influence the micro-viscosity. For a time-modulated driving, the mean friction force of the driven particle shows a pronounced resonance behavior, i.e., it changes strongly as a function of driving frequency. The model has two known limits: For infinite trap stiffness, it can be mapped to diffusion in a tilted periodic potential. For infinite bath friction, the original Prandtl–Tomlinson model is recovered. We find that the flow curve of the model (roughly) crosses over between these two limiting cases.

1.
A.
Yao
,
M.
Tassieri
,
M.
Padgett
, and
J.
Cooper
, “
Microrheology with optical tweezers
,”
Lab Chip
9
,
2568
(
2009
).
2.
I.
Sriram
,
A.
Meyer
, and
E. M.
Furst
, “
Active microrheology of a colloidal suspension in the direct collision limit
,”
Phys. Fluids
22
,
062003
(
2010
).
3.
L. G.
Wilson
,
A. W.
Harrison
,
W. C. K.
Poon
, and
A. M.
Puertas
, “
Microrheology and the fluctuation theorem in dense colloids
,”
Europhys. Lett.
93
,
58007
(
2011
).
4.
J. R.
Gomez-Solano
and
C.
Bechinger
, “
Probing linear and nonlinear microrheology of viscoelastic fluids
,”
Europhys. Lett.
108
,
54008
(
2014
).
5.
W. W.
Ahmed
,
É.
Fodor
, and
T.
Betz
, “
Active cell mechanics: Measurement and theory
,”
Biochim. Biophys. Acta, Mol. Cell Res.
1853
,
3083
(
2015
).
6.
M.
Tassieri
, “
Linear microrheology with optical tweezers of living cells ‘is not an option'!
,”
Soft Matter
11
,
5792
(
2015
).
7.
M.
Tassieri
,
Microrheology with Optical Tweezers: Principles and Applications
(
CRC Press
,
2016
).
8.
R. M.
Robertson-Anderson
, “
Optical tweezers microrheology: From the basics to advanced techniques and applications
,”
ACS Macro Lett.
7
,
968
(
2018
).
9.
B.
Müller
,
J.
Berner
,
C.
Bechinger
, and
M.
Krüger
, “
Properties of a nonlinear bath: Experiments, theory, and a stochastic Prandtl–Tomlinson model
,”
New J. Phys.
22
,
023014
(
2020
).
10.
L. S.
Madsen
,
M.
Waleed
,
C. A.
Casacio
,
A.
Terrasson
,
A. B.
Stilgoe
,
M. A.
Taylor
, and
W. P.
Bowen
, “
Ultrafast viscosity measurement with ballistic optical tweezers
,”
Nat. Photonics
15
,
386
(
2021
).
11.
R.
Jain
,
F.
Ginot
,
J.
Berner
,
C.
Bechinger
, and
M.
Krüger
, “
Two step micro-rheological behavior in a viscoelastic fluid
,”
J. Chem. Phys.
154
,
184904
(
2021
).
12.
K.
Sekimoto
, “
Langevin equation and thermodynamics
,”
Prog. Theor. Phys. Suppl.
130
,
17
(
1998
).
13.
S.
Ciliberto
,
S.
Joubaud
, and
A.
Petrosyan
, “
Fluctuations in out-of-equilibrium systems: From theory to experiment
,”
J. Stat. Mech.: Theory Exp.
2010
,
P12003
.
14.
J.
Mehl
,
V.
Blickle
,
U.
Seifert
, and
C.
Bechinger
, “
Experimental accessibility of generalized fluctuation-dissipation relations for nonequilibrium steady states
,”
Phys. Rev. E
82
,
032401
(
2010
).
15.
U.
Seifert
, “
Stochastic thermodynamics, fluctuation theorems and molecular machines
,”
Rep. Prog. Phys.
75
,
126001
(
2012
).
16.
S.
Ciliberto
, “
Experiments in stochastic thermodynamics: Short history and perspectives
,”
Phys. Rev. X
7
,
021051
(
2017
).
17.
S.
Krishnamurthy
,
S.
Ghosh
,
D.
Chatterji
,
R.
Ganapathy
, and
A.
Sood
, “
A micrometre-sized heat engine operating between bacterial reservoirs
,”
Nat. Phys.
12
,
1134
(
2016
).
18.
V.
Blickle
and
C.
Bechinger
, “
Realization of a micrometre-sized stochastic heat engine
,”
Nat. Phys.
8
,
143
(
2012
).
19.
D. S.
Lemons
and
A.
Gythiel
, “
Paul Langevin's 1908 paper “On the Theory of Brownian Motion” [“Sur la théorie du mouvement brownien,” C. R. Acad. Sci. (Paris) 146, 530–533 (1908)]
,”
Am. J. Phys.
65
,
1079
(
1997
).
20.
C.
Gutsche
,
F.
Kremer
,
M.
Krüger
,
M.
Rauscher
,
R.
Weeber
, and
J.
Harting
, “
Colloids dragged through a polymer solution: Experiment, theory, and simulation
,”
J. Chem. Phys.
129
,
084902
(
2008
).
21.
I.
Gazuz
,
A. M.
Puertas
,
T.
Voigtmann
, and
M.
Fuchs
, “
Active and nonlinear microrheology in dense colloidal suspensions
,”
Phys. Rev. Lett.
102
,
248302
(
2009
).
22.
T. M.
Squires
and
J. F.
Brady
, “
A simple paradigm for active and nonlinear microrheology
,”
Phys. Fluids
17
,
073101
(
2005
).
23.
M.
Gruber
,
A. M.
Puertas
, and
M.
Fuchs
, “
Critical force in active microrheology
,”
Phys. Rev. E
101
,
012612
(
2020
).
24.
C. J.
Harrer
,
D.
Winter
,
J.
Horbach
,
M.
Fuchs
, and
T.
Voigtmann
, “
Force-induced diffusion in microrheology
,”
J. Phys.: Condens. Matter
24
,
464105
(
2012
).
25.
S.
Leitmann
and
T.
Franosch
, “
Nonlinear response in the driven lattice Lorentz gas
,”
Phys. Rev. Lett.
111
,
190603
(
2013
).
26.
O.
Bénichou
,
A.
Bodrova
,
D.
Chakraborty
,
P.
Illien
,
A.
Law
,
C.
Mejía-Monasterio
,
G.
Oshanin
, and
R.
Voituriez
, “
Geometry-induced superdiffusion in driven crowded systems
,”
Phys. Rev. Lett.
111
,
260601
(
2013
).
27.
D.
Winter
,
J.
Horbach
,
P.
Virnau
, and
K.
Binder
, “
Active nonlinear microrheology in a glass-forming Yukawa fluid
,”
Phys. Rev. Lett.
108
,
028303
(
2012
).
28.
M.
Fuchs
and
M. E.
Cates
, “
Schematic models for dynamic yielding of sheared colloidal glasses
,”
Faraday Discuss
123
,
267
(
2003
).
29.
J.
Berner
,
B.
Müller
,
J. R.
Gomez-Solano
,
M.
Krüger
, and
C.
Bechinger
, “
Oscillating modes of driven colloids in overdamped systems
,”
Nat. Commun.
9
,
999
(
2018
).
30.
M.
Gruber
,
G. C.
Abade
,
A. M.
Puertas
, and
M.
Fuchs
, “
Active microrheology in a colloidal glass
,”
Phys. Rev. E
94
,
042602
(
2016
).
31.
R. G.
Larson
,
The Structure and Rheology of Complex Fluids
(
Oxford university Press
,
New York
,
1999
), Vol.
150
.
32.
V.
Démery
and
É.
Fodor
, “
Driven probe under harmonic confinement in a colloidal bath
,”
J. Stat. Mech.: Theory Exp.
2019
,
033202
.
33.
A.
Jayaraman
and
A.
Belmonte
, “
Oscillations of a solid sphere falling through a wormlike micellar fluid
,”
Phys. Rev. E
67
,
065301
(
2003
).
34.
N. Z.
Handzy
and
A.
Belmonte
, “
Oscillatory rise of bubbles in wormlike micellar fluids with different microstructures
,”
Phys. Rev. Lett.
92
,
124501
(
2004
).
35.
J. O.
Daldrop
,
B. G.
Kowalik
, and
R. R.
Netz
, “
External potential modifies friction of molecular solutes in water
,”
Phys. Rev. X
7
,
041065
(
2017
).
36.
B.
Kowalik
,
J. O.
Daldrop
,
J.
Kappler
,
J. C.
Schulz
,
A.
Schlaich
, and
R. R.
Netz
, “
Memory-kernel extraction for different molecular solutes in solvents of varying viscosity in confinement
,”
Phys. Rev. E
100
,
012126
(
2019
).
37.
B.
Müller
, “
Brownian particles in nonequilibrium solvents
,” Ph.D. thesis (
Georg-August-Universität Göttingen
,
2019
).
38.
V.
Lis
and
J.
Tóthová
, “
Generalized Langevin equation and the fluctuation-dissipation theorem for particle-bath systems in a harmonic field
,”
Results Phys.
12
,
1212
(
2019
).
39.
J.
Tóthová
and
V.
Lis
, “
Brownian motion in a bath affected by an external harmonic potential
,”
Phys. Lett. A
395
,
127220
(
2021
).
40.
R.
Zwanzig
, “
Nonlinear generalized Langevin equations
,”
J. Stat. Phys.
9
,
215
(
1973
).
41.
S.
Nordholm
and
R.
Zwanzig
, “
A systematic derivation of exact generalized Brownian motion theory
,”
J. Stat. Phys.
13
,
347
(
1975
).
42.
R.
Zwanzig
,
Nonequilibrium Statistical Mechanics
(
Oxford University Press
,
2011
).
43.
H.
Grabert
,
Projection Operator Techniques in Nonequilibrium Statistical Mechanics
(
Springer
,
2006
), Vol.
95
.
44.
M.
Krüger
and
C.
Maes
, “
The modified Langevin description for probes in a nonlinear medium
,”
J. Phys.: Condens. Matter
29
,
064004
(
2017
).
45.
H.
Meyer
,
T.
Voigtmann
, and
T.
Schilling
, “
On the non-stationary generalized Langevin equation
,”
J. Chem. Phys.
147
,
214110
(
2017
).
46.
M.
te Vrugt
and
R.
Wittkowski
, “
Projection operators in statistical mechanics: A pedagogical approach
,”
Eur. J. Phys.
41
,
045101
(
2020
).
47.
J.
Zausch
,
J.
Horbach
,
M.
Laurati
,
S. U.
Egelhaaf
,
J. M.
Brader
,
T.
Voigtmann
, and
M.
Fuchs
, “
From equilibrium to steady state: The transient dynamics of colloidal liquids under shear
,”
J. Phys.: Condens. Matter
20
,
404210
(
2008
).
48.
B. G.
Mitterwallner
,
L.
Lavacchi
, and
R. R.
Netz
, “
Negative friction memory induces persistent motion
,”
Eur. Phys. J. E
43
,
67
(
2020
).
49.
L.
Prandtl
, “
Ein gedankenmodell zur kinetischen theorie der festen Körper
,”
Z. Angew. Math. Mech.
8
,
85
(
1928
).
50.
G.
Tomlinson
, “
CVI. A molecular theory of friction
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
7
,
905
(
1929
).
51.
A. O.
Caldeira
and
A. J.
Leggett
, “
Influence of dissipation on quantum tunneling in macroscopic systems
,”
Phys. Rev. Lett.
46
,
211
(
1981
).
52.
V. L.
Popov
and
J.
Gray
,
The History of Theoretical, Material and Computational Mechanics—Mathematics Meets Mechanics and Engineering
(
Springer
,
2014
), pp.
153
168
.
53.
M. H.
Müser
, “
Velocity dependence of kinetic friction in the Prandtl–Tomlinson model
,”
Phys. Rev. B
84
,
125419
(
2011
).
54.
K.
Debrabant
, “
Runge–Kutta methods for third order weak approximation of SDEs with multidimensional additive noise
,”
BIT Numer. Math.
50
,
541
(
2010
).
55.
R.
Zwanzig
,
Lectures in Theoretical Physics
, edited by
W.
Brittin
(
Interscience
,
1961
), Vol.
3
.
56.
H.
Mori
, “
Transport, collective motion, and Brownian motion
,”
Prog. Theor. Phys.
33
,
423
(
1965
).
57.
H.
Risken
,
The Fokker-Planck Equation
, 2nd ed. (
Springer-Verlag
,
Berlin
,
1989
).
58.
M.
Kardar
,
Statistical Physics of Fields
(
Cambridge University Press
,
2007
).
59.
V. L.
Popov
,
Contact Mechanics and Friction
(
Springer-Verlag
,
Berlin
,
2010
).
60.
M. H.
Müser
, “
Shear thinning in the Prandtl model and its relation to generalized Newtonian fluids
,”
Lubricants
8
,
38
(
2020
).
61.
Y. W.
Kim
and
W.
Sung
, “
Alignment of liquid crystals on polyimide films exposed to ultraviolet light
,”
Phys. Rev. E
57
,
5644
(
1998
).
62.
S.
Saikia
,
A.
Jayannavar
, and
M. C.
Mahato
, “
Stochastic resonance in periodic potentials
,”
Phys. Rev. E
83
,
061121
(
2011
).
63.
W.
Reenbohn
and
M. C.
Mahato
, “
Dynamical states, stochastic resonance, and ratchet effect in a biharmonically driven sinusoidal potential
,”
Phys. Rev. E
91
,
052151
(
2015
).
You do not currently have access to this content.