Accurate modeling of the interaction between oil and sea ice is essential for predicting oil spill fate and transport in ice-infested waters. A three-dimensional numerical model based on the smoothed particle hydrodynamics (SPH) method is incorporated to model such interactions. The effects from air and water are well captured using suitable force components and without explicit inclusion of air and water phases. This reduces the four-phase SPH model into a two-phase model, significantly reducing computational costs and potentially enabling the use of this model for large-scale simulations. We validate the model against experimental data recently available in the literature on oil–ice interactions. The experiments studied the interaction in a flume between an ice floe and oil slick for different types of crude oils. The current velocities were varied and the thicknesses of the oil slicks were measured. The validation results show that our SPH model can adequately simulate the interaction between oil slicks and ice floes. The simulated average thicknesses fit well with the measured thicknesses despite the considerable difference in the viscosity of the tested crude oil. Moreover, the effects of oil density, surface tension, viscosity, and current velocity on oil slick accumulation in front of the ice floe are studied. The higher current velocities and higher oil density lead to thicker oil slick thickness next to the ice floe. The surface tension effect on oil slick thickness is not significant. Finally, we provide estimates for the minimum oil slick thickness for a finite range of oil viscosities.

1.
C.
Beegle-Krause
, “
Chapter 9—Challenges and mysteries in oil spill fate and transport modeling
,” in
Oil Spill Environmental Forensics Case Studies
, edited by
S. A.
Stout
and
Z.
Wang
(
Butterworth-Heinemann
,
2018
), pp.
187
199
.
2.
G.
Broström
,
A.
Carrasco
, and
S.
Berger
, “
Oil drift modeling, the m/v Godafoss accident
,” in
Proceedings of the Sixth International Conference on EuroGOOS
(
2011
), pp.
274
282
.
3.
T.
Nordam
,
E.
Litzler
,
P.
Rønningen
,
J.
Aune
,
T. F.
Hagelien
,
C. J.
Beegle-Krause
, and
U.
Brönner
, “
Oil spill contingency and response modelling in ice-covered waters
,” in
Proceedings of the Forty-First AMOP Technical Seminar, Environment and Climate Change Canada Ottawa
,
ON, Canada
(
2018
).
4.
T.
Nordam
,
C.
Beegle-Krause
,
J.
Skancke
,
R.
Nepstad
, and
M.
Reed
, “
Improving oil spill trajectory modelling in the arctic
,”
Mar. Pollut. Bull.
140
,
65
74
(
2019
).
5.
J.
Wilkinson
,
C. J.
Beegle-Krause
,
K.-U.
Evers
,
N.
Hughes
,
A.
Lewis
,
M.
Reed
, and
P.
Wadhams
, “
Oil spill response capabilities and technologies for ice-covered arctic marine waters: A review of recent developments and established practices
,”
Ambio
46
,
423
441
(
2017
).
6.
S.
Venkatesh
,
H.
El-Tahan
,
G.
Comfort
, and
R.
Abdelnour
, “
Modelling the behaviour of oil spills in ice-infested waters
,”
Atmos.-Ocean
28
,
303
329
(
1990
).
7.
C.
Beegle-Krause
,
M.
McPhee
,
H.
Simmons
,
R. L.
Daae
, and
M.
Reed
, “
The fate of dispersed oil under ice: Results of jip phase 1 program
,” in
International Oil Spill Conference Proceedings
(
American Petroleum Institute
,
2014
), Vol. 2014, pp.
949
959
.
8.
M. Ø.
Moldestad
,
F.
Leirvik
,
Ø.
Johansen
,
P. S.
Daling
, and
A.
Lewis
, “
Environmental emulsions: A practical approach
,”
Surfactant Sci. Ser.
132
,
355
381
(
2006
).
9.
M. F.
Fingas
, “
A literature review of the physics and predictive modelling of oil spill evaporation
,”
J. Hazard. Mater.
42
,
157
175
(
1995
).
10.
M.
Reed
,
C.
Turner
, and
A.
Odulo
, “
The role of wind and emulsification in modelling oil spill and surface drifter trajectories
,”
Spill Sci. Technol. Bull.
1
,
143
157
(
1994
).
11.
G. A. L.
Delvigne
and
C.
Sweeney
, “
Natural dispersion of oil
,”
Oil Chem. Pollut.
4
,
281
310
(
1988
).
12.
M.
Reed
,
Ø.
Johansen
,
P. J.
Brandvik
,
P.
Daling
,
A.
Lewis
,
R.
Fiocco
,
D.
Mackay
, and
R.
Prentki
, “
Oil spill modeling towards the close of the 20th century: Overview of the state of the art
,”
Spill Sci. Technol. Bull.
5
,
3
16
(
1999
).
13.
M. Ø.
Moldestad
,
F.
Leirvik
,
Ø.
Johansen
,
P. S.
Daling
, and
A.
Lewis
, “
Environmental emulsions: A practical approach
,” in
Emulsions and Emulsion Stability
(
CRC Press
,
2005
), pp.
375
402
.
14.
R.
Wang
,
Z.
Zhu
,
W.
Zhu
,
X.
Fu
, and
S.
Xing
, “
A dynamic marine oil spill prediction model based on deep learning
,”
J. Coastal Res.
37
,
716
725
(
2021
).
15.
Y.
Chen
, “
Development of an oil spill model adaptable to exposure and submergence conversion of tidal flats: A case study in the Changjiang estuary
,”
Mar. Pollut. Bull.
171
,
112715
(
2021
).
16.
M.
Reed
,
E.
Gundlach
, and
T.
Kana
, “
A coastal zone oil spill model: Development and sensitivity studies
,”
Oil Chem. Pollut.
5
,
411
449
(
1989
).
17.
P.
Daniel
,
F.
Marty
,
P.
Josse
,
C.
Skandrani
, and
R.
Benshila
, “
Improvement of drift calculation in mothy operational oil spill prediction system
,” in
International Oil Spill Conference
(
American Petroleum Institute
,
2003
), Vol.
2003
, pp.
1067
1072
.
18.
P.
Carracedo
,
S.
Torres-López
,
M.
Barreiro
,
P.
Montero
,
C.
Balseiro
,
E.
Penabad
,
P.
Leitao
, and
V.
Pérez-Muñuzuri
, “
Improvement of pollutant drift forecast system applied to the prestige oil spills in Galicia coast (NW of Spain): Development of an operational system
,”
Mar. Pollut. Bull.
53
,
350
360
(
2006
).
19.
B.
Zelenke
,
C.
O'Connor
,
C. H.
Barker
,
C.
Beegle-Krause
, and
L.
Eclipse
,
General NOAA Operational Modeling Environment (GNOME) Technical Documentation
(
National Oceanic and Atmospheric Administration
,
2012
).
20.
M.
De Dominicis
,
N.
Pinardi
,
G.
Zodiatis
, and
R.
Lardner
, “
Medslik-II, a Lagrangian marine surface oil spill model for short-term forecasting—Part 1: Theory
,”
Geosci. Model Dev.
6
,
1851
1869
(
2013
).
21.
K.-F.
Dagestad
,
J.
Röhrs
,
Ø.
Breivik
, and
B.
Ådlandsvik
, “
Opendrift v1. 0: A generic framework for trajectory modelling
,”
Geosci. Model Dev.
11
(
4
),
1405
1420
(
2018
).
22.
R.
Gingold
and
J.
Monaghan
, “
Kernel estimates as a basis for general particle methods in hydrodynamics
,”
J. Comput. Phys.
46
,
429
453
(
1982
).
23.
J. J.
Monaghan
, “
Smoothed particle hydrodynamics
,”
Annu. Rev. Astron. Astrophys.
30
,
543
574
(
1992
).
24.
P.
Tkalich
, “
A CFD solution of oil spill problems
,”
Environ. Modell. Software
21
,
271
282
(
2006
).
25.
J.
Zhao
,
J.
Liu
,
H.
Dong
,
W.
Zhao
, and
L.
Wei
, “
Numerical investigation on the flow and heat transfer characteristics of waxy crude oil during the tubular heating
,”
Int. J. Heat Mass Transfer
161
,
120239
(
2020
).
26.
D.
Violeau
,
C.
Buvat
,
K.
Abed-Meraïm
, and
E.
de Nanteuil
, “
Numerical modelling of boom and oil spill with SPH
,”
Coastal Eng.
54
,
895
913
(
2007
).
27.
Y.
Shi
,
S.
Li
,
S.
Peng
,
H.
Chen
, and
M.
He
, “
Numerical modeling of flexible floating boom using a coupled SPH–FEM model
,”
Coastal Eng. J.
60
,
140
158
(
2018
).
28.
J.
Wang
and
Y.
Shen
, “
Modeling oil spills transportation in seas based on unstructured grid, finite-volume, wave-ocean model
,”
Ocean Modell.
35
,
332
344
(
2010
).
29.
X.
Yang
and
M.
Liu
, “
Numerical modeling of oil spill containment by boom using SPH
,”
Sci. China Phys. Mech. Astron.
56
,
315
321
(
2013
).
30.
M.
Liu
and
G.
Liu
, “
Smoothed particle hydrodynamics (SPH): An overview and recent developments
,”
Arch. Comput. Methods Eng.
17
,
25
76
(
2010
).
31.
P. W.
Cleary
,
M.
Prakash
,
J.
Ha
,
N.
Stokes
, and
C.
Scott
, “
Smooth particle hydrodynamics: Status and future potential
,”
Prog. Comput. Fluid Dyn. Int. J.
7
,
70
90
(
2007
).
32.
G.-R.
Liu
and
M. B.
Liu
,
Smoothed Particle Hydrodynamics: A Meshfree Particle Method
(
World Scientific
,
2003
).
33.
L. B.
Lucy
, “
A numerical approach to the testing of the fission hypothesis
,”
Astron. J.
82
,
1013
1024
(
1977
).
34.
R. A.
Gingold
and
J. J.
Monaghan
, “
Smoothed particle hydrodynamics: Theory and application to non-spherical stars
,”
Mon. Not. R. Astron. Soc.
181
,
375
389
(
1977
).
35.
J. J.
Monaghan
, “
Simulating free surface flows with SPH
,”
J. Comput. Phys.
110
,
399
406
(
1994
).
36.
J. P.
Morris
,
P. J.
Fox
, and
Y.
Zhu
, “
Modeling low Reynolds number incompressible flows using SPH
,”
J. Comput. Phys.
136
,
214
226
(
1997
).
37.
A.
Colagrossi
and
M.
Landrini
, “
Numerical simulation of interfacial flows by smoothed particle hydrodynamics
,”
J. Comput. Phys.
191
,
448
475
(
2003
).
38.
X.
Hu
and
N. A.
Adams
, “
An incompressible multi-phase SPH method
,”
J. Comput. Phys.
227
,
264
278
(
2007
).
39.
N.
Grenier
,
M.
Antuono
,
A.
Colagrossi
,
D. L.
Touzé
, and
B.
Alessandrini
, “
An Hamiltonian interface SPH formulation for multi-fluid and free surface flows
,”
J. Comput. Phys.
228
,
8380
8393
(
2009
).
40.
C.
Gissler
,
S.
Band
,
A.
Peer
,
M.
Ihmsen
, and
M.
Teschner
, “
Generalized drag force for particle-based simulations
,”
Comput. Graph.
69
,
1
11
(
2017
).
41.
Jan
Bender
 et al., (
2021
). “
SPlisHSPlasH Library
,” Computer Program. https://github.com/InteractiveComputerGraphics/SPlisHSPlasH.
42.
J. H.
Øksenvåg
,
M.
Fossen
, and
U.
Farooq
, “
Study on how oil type and weathering of crude oils affect interaction with sea ice and polyethylene skimmer material
,”
Mar. Pollut. Bull.
145
,
306
315
(
2019
).
43.
T.
Nordam
,
E.
Litzler
,
J.
Skancke
,
I.
Singsaas
,
F.
Leirvik
, and
Ø.
Johansen
, “
Modelling of oil thickness in the presence of an ice edge
,”
Mar. Pollut. Bull.
156
,
111229
(
2020
).
44.
I.
Singsaas
,
F.
Leirvik
,
P. S.
Daling
,
C.
Guénette
, and
K. R.
Sørheim
, “
Fate and behaviour of weathered oil drifting into sea ice, using a novel wave and current flume
,”
Mar. Pollut. Bull.
159
,
111485
(
2020
).
45.
Y.
Huang
,
Z.
Dai
,
W.
Zhang
 et al.,
Geo-Disaster Modeling and Analysis: An SPH-Based Approach
(
Springer
,
2014
).
46.
J.
Bender
and
D.
Koschier
, “
Divergence-free smoothed particle hydrodynamics
,” in
Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation
(
ACM
,
2015
), pp.
147
155
.
47.
M.
Macklin
and
M.
Müller
, “
Position based fluids
,”
ACM Trans. Graphics (TOG)
32
,
1
12
(
2013
).
48.
M.
Ihmsen
,
J.
Orthmann
,
B.
Solenthaler
,
A.
Kolb
, and
M.
Teschner
,
SPH Fluids in Computer Graphics
(
Eurographics Association
,
2014
).
49.
M.
Weiler
,
D.
Koschier
,
M.
Brand
, and
J.
Bender
, “
A physically consistent implicit viscosity solver for SPH fluids
,”
Comput. Graphics Forum
37
,
145
155
(
2018
).
50.
N.
Akinci
,
G.
Akinci
, and
M.
Teschner
, “
Versatile surface tension and adhesion for SPH fluids
,”
ACM Trans. Graphics (TOG)
32
,
1
8
(
2013
).
51.
N.
Akinci
,
M.
Ihmsen
,
G.
Akinci
,
B.
Solenthaler
, and
M.
Teschner
, “
Versatile rigid-fluid coupling for incompressible SPH
,”
ACM Trans. Graphics (TOG)
31
,
1
8
(
2012
).
52.
J. P.
Morris
,
Analysis of Smoothed Particle Hydrodynamics with Applications
(
Monash University Australia
,
1996
).
53.
D.
Koschier
and
J.
Bender
, “
Density maps for improved SPH boundary handling
,” in
Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation
(
ACM
,
2017
), pp.
1
10
.
You do not currently have access to this content.