This work investigates the breakup of liquid metal droplets experimentally using a shock tube. Droplets of Field's metal melt are produced and their flow-induced deformation and rupture are captured by a high-speed camera. Results are compared to previous data on Galinstan droplet breakup using image sequences and deformation data. Regarding differences, we find that Field's metal droplets show slightly larger deformations and breakup into a larger number of smaller fragments, especially at low Weber numbers. We expect this to be an effect of different oxidation rates. However, both oxidizing metals show a very similar behavior with respect to the breakup morphology, transition between modes, and the timing of the deformation across the investigated Weber number range of 10–100. In addition, core features that distinguish the breakup of metals from that of conventional, water-like liquids are confirmed. Based on the similarities, we propose that the findings can be generalized to also represent other oxide-forming metals. Weber number-dependent fits are presented for the initial deformation time, the time of the onset of breakup, and the maximum cross-stream diameter. In addition, we provide an empirical fit for the time-dependent cross-stream deformation and evaluate it against experimental data and models from the literature. The fits can be used directly in numerical studies or help improve current breakup models.

1.
H.
Henein
,
V.
Uhlenwinkel
, and
U.
Fritsching
, in
Metal Sprays and Spray Deposition
, edited by
H.
Henein
,
V.
Uhlenwinkel
, and
U.
Fritsching
(
Springer International Publishing
,
Cham, Switzerland
,
2017
).
2.
P. S.
Grant
, “
Spray forming
,”
Prog. Mater. Sci.
39
(
4–5
),
497
545
(
1995
).
3.
L.
Galfetti
,
L. T.
DeLuca
,
F.
Severini
,
G.
Colombo
,
L.
Meda
, and
G.
Marra
, “
Pre and post-burning analysis of nano-aluminized solid rocket propellants
,”
Aerosp. Sci. Technol.
11
(
1
),
26
32
(
2007
).
4.
B.
Van der Schueren
and
J.-P.
Kruth
, “
Powder deposition in selective metal powder sintering
,”
Rapid Prototyping J.
1
(
3
),
23
31
(
1995
).
5.
K.
Bauckhage
, “
Das Zerstäuben metallischer Schmelzen
,”
Chem. Ing. Tech.
64
(
4
),
322
332
(
1992
).
6.
I. E.
Anderson
,
E. M. H.
White
, and
R.
Dehoff
, “
Feedstock powder processing research needs for additive manufacturing development
,”
Curr. Opin. Solid State Mater. Sci.
22
(
1
),
8
15
(
2018
).
7.
N.
Zeoli
and
S.
Gu
, “
Numerical modelling of droplet break-up for gas atomisation
,”
Comput. Mater. Sci.
38
(
2
),
282
292
(
2006
).
8.
A.
Ünal
, “
Liquid break-up in gas atomization of fine aluminum powders
,”
Metall. Trans. B
20
(
1
),
61
69
(
1989
).
9.
D. A.
Firmansyah
,
R.
Kaiser
,
R.
Zahaf
,
Z.
Coker
,
T. Y.
Choi
, and
D.
Lee
, “
Numerical simulations of supersonic gas atomization of liquid metal droplets
,”
Jpn. J. Appl. Phys.
Part 1
53
(
3
),
05HA09
(
2014
).
10.
D. R.
Guildenbecher
,
C.
López-Rivera
, and
P. E.
Sojka
, “
Secondary atomization
,”
Exp. Fluids
46
(
3
),
371
402
(
2009
).
11.
J. W. J.
Kaiser
,
J. M.
Winter
,
S.
Adami
, and
N. A.
Adams
, “
Investigation of interface deformation dynamics during high-Weber number cylindrical droplet breakup
,”
Int. J. Multiphase Flow
132
,
103409
(
2020
).
12.
I. M.
Jackiw
and
N.
Ashgriz
, “
On aerodynamic droplet breakup
,”
J. Fluid Mech.
913
(
A33
),
1
46
(
2021
).
13.
B.
Dorschner
,
L.
Biasiori-Poulanges
,
K.
Schmidmayer
,
H.
El-Rabii
, and
T.
Colonius
, “
On the formation and recurrent shedding of ligaments in droplet aerobreakup
,”
J. Fluid Mech.
904
,
A20
(
2020
).
14.
M.
Jain
,
R. S.
Prakash
,
G.
Tomar
, and
R. V.
Ravikrishna
, “
Secondary breakup of a drop at moderate Weber numbers
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
471
(
2177
),
20140930
(
2015
).
15.
D.
Stefanitsis
,
G.
Strotos
,
N.
Nikolopoulos
,
E.
Kakaras
, and
M.
Gavaises
, “
Improved droplet breakup models for spray applications
,”
Int. J. Heat Fluid Flow
76
,
274
286
(
2019
).
16.
V.
Kulkarni
and
P. E.
Sojka
, “
Bag breakup of low viscosity drops in the presence of a continuous air jet
,”
Phys. Fluids
26
(
7
),
072103
(
2014
).
17.
M.
Leitner
,
T.
Leitner
,
A.
Schmon
,
K.
Aziz
, and
G.
Pottlacher
, “
Thermophysical properties of liquid aluminum
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
48
(
6
),
1
10
(
2017
).
18.
M. J.
Assael
,
K.
Kakosimos
,
R. M.
Banish
 et al, “
Reference data for the density and viscosity of liquid aluminum and liquid iron
,”
J. Phys. Chem. Ref. Data
35
(
1
),
285
300
(
2006
).
19.
Y.
Chen
,
J. L.
Wagner
,
P. A.
Farias
,
E. P.
DeMauro
, and
D. R.
Guildenbecher
, “
Galinstan liquid metal breakup and droplet formation in a shock-induced cross-flow
,”
Int. J. Multiphase Flow
106
(
505
),
147
163
(
2018
).
20.
P.
Yim
, “
The role of surface oxidation in the break-up of laminar liquid metal jets
,” Doctoral dissertation (Massachusetts Institute of Technology,
1996
).
21.
J. O.
Hinze
, “
Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes
,”
AIChE J.
1
(
3
),
289
295
(
1955
).
22.
M.
Pilch
and
C. A.
Erdman
, “
Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop
,”
Int. J. Multiphase Flow
13
(
6
),
741
757
(
1987
).
23.
Z.
Dai
and
G. M.
Faeth
, “
Temporal properties of secondary drop breakup in the multimode breakup regime
,”
Int. J. Multiphase Flow
27
(
2
),
217
236
(
2001
).
24.
S. A.
Krzeczkowski
, “
Measurement of liquid droplet disintegration mechanisms
,”
Int. J. Multiphase Flow
6
(
3
),
227
239
(
1980
).
25.
L.-P.
Hsiang
and
G. M.
Faeth
, “
Drop deformation and breakup due to shock wave and steady disturbances
,”
Int. J. Multiphase Flow
21
(
4
),
545
560
(
1995
).
26.
W. H.
Chou
,
L. P.
Hsiang
, and
G. M.
Faeth
, “
Temporal properties of drop breakup in the shear breakup regime
,”
Int. J. Multiphase Flow
23
(
4
),
651
669
(
1997
).
27.
X.
Cao
,
Z.
Sun
,
W.
Li
 et al, “
A new breakup regime of liquid drops identified in a continuous and uniform air jet flow
,”
Phys. Fluids
19
(
5
),
057103
(
2007
).
28.
S. S.
Jain
,
N.
Tyagi
,
R. S.
Prakash
,
R. V.
Ravikrishna
, and
G.
Tomar
, “
Secondary breakup of drops at moderate Weber numbers: Effect of density ratio and Reynolds number
,”
Int. J. Multiphase Flow
117
,
25
41
(
2019
).
29.
P. D.
Patel
and
T. G.
Theofanous
, “
Hydrodynamic fragmentation of drops
,”
J. Fluid Mech.
103
,
207
223
(
1981
).
30.
G.
Ciccarelli
and
D. L.
Frost
, “
Fragmentation mechanisms based on single drop steam explosion experiments using flash X-ray radiography
,”
Nucl. Eng. Des.
146
(
1–3
),
109
132
(
1994
).
31.
H. Ó.
Haraldsson
,
H. X.
Li
,
Z. L.
Yang
,
T. N.
Dinh
, and
B. R.
Sehgal
, “
Effect of solidification on drop fragmentation in liquid-liquid media
,”
Heat Mass. Transfer Stoffuebertrag.
37
(
4–5
),
417
426
(
2001
).
32.
S.
Thakre
and
W.
Ma
, “
3D simulations of the hydrodynamic deformation of melt droplets in a water pool
,”
Ann. Nucl. Energy
75
,
123
131
(
2015
).
33.
N.
Kouraytem
,
E. Q.
Li
, and
S. T.
Thoroddsen
, “
Formation of microbeads during vapor explosions of Field's metal in water
,”
Phys. Rev. E
93
(
6
),
063108
(
2016
).
34.
H. E.
Wolfe
and
W. H.
Andersen
,
Kinetics, Mechanism, and Resultant Droplet Sizes of the Aerodynamic Breakup of Liquid Drops
(
Aerojet-General Corp
.,
Downey, CA
,
1964
).
35.
L. P.
Hsiang
and
G. M.
Faeth
, “
Near-limit drop deformation and secondary breakup
,”
Int. J. Multiphase Flow
18
(
5
),
635
652
(
1992
).
36.
M.
Arienti
,
M.
Ballard
,
M.
Sussman
 et al, “
Comparison of simulation and experiments for multimode aerodynamic breakup of a liquid metal column in a shock-induced cross-flow
,”
Phys. Fluids
31
(
8
),
082110
(
2019
).
37.
T.
Hopfes
,
J.
Petersen
,
Z.
Wang
,
M.
Giglmaier
, and
N. A.
Adams
, “
Secondary atomization of liquid metal droplets at moderate Weber numbers
,”
Int. J. Multiphase Flow
143
,
103723
(
2021
).
38.
H.
Guleryuz
and
H.
Cimenoglu
, “
Oxidation of Ti–6Al–4V alloy
,”
J. Alloys Compd.
472
(
1–2
),
241
246
(
2009
).
39.
A.
Lipchitz
,
L.
Laurent
, and
G. D.
Harvel
, “
Suitability of eutectic Field's metal for use in an electromagnetohydrodynamically-enhanced experimental two-phase flow loop.
” in
ICONE20-POWER2012
(
American Society of Mechanical Engineers
,
2012
), pp.
51
58
.
40.
Z.
Wang
,
T.
Hopfes
,
M.
Giglmaier
, and
N. A.
Adams
, “
Effect of Mach number on droplet aerobreakup in shear stripping regime
,”
Exp. Fluids
61
(
9
),
193
(
2020
).
41.
Z.
Wang
,
T.
Hopfes
,
M.
Giglmaier
, and
N. A.
Adams
, “
Experimental investigation of shock-induced tandem droplet breakup
,”
Phys. Fluids
33
(
1
),
012113
(
2021
).
42.
M.
Hadj-Achour
,
N.
Rimbert
,
S.
Castrillon-Escobar
, and
M.
Gradeck
, “
A study of liquid-liquid secondary fragmentation with solidification
,” in
Proceedings ICLASS–2015
(
Universitat Politècnica València
,
Taiwan
,
2015
).
43.
A.
Lipchitz
,
T.
Imbert
, and
G. D.
Harvel
, “
Investigation of fluid dynamic properties of liquid Field's metal
,” in
Proceedings of the ASME 2013 Power Conference, POWER2013
(
American Society of Mechanical Engineers
,
2013
), pp.
1
9
.
44.
A.
Lipchitz
,
G.
Harvel
, and
T.
Sunagawa
, “
Experimental investigation of the thermal conductivity and viscosity of liquid In-Bi-Sn eutectic alloy (Field's metal) for use in a natural circulation experiental loop
,” in
Proceedings of the International Conference on Nuclear Engineering
(
2015
).
45.
S. C.
Escobar
, “
Instabilité et dispersion de jets de corium liquides: Analyse des processus physiques et modélisation dans le logiciel MC3D
,” Doctoral dissertation (
Université de Lorraine
,
2016
).
46.
J. D.
Berry
,
M. J.
Neeson
,
R. R.
Dagastine
,
D. Y. C.
Chan
, and
R. F.
Tabor
, “
Measurement of surface and interfacial tension using pendant drop tensiometry
,”
J. Colloid Interface Sci.
454
,
226
237
(
2015
).
47.
M.
Wegener
,
L.
Muhmood
,
S.
Sun
, and
A. V.
Deev
, “
Surface tension measurements of calcia-alumina slags: A comparison of dynamic methods
,”
Metall. Mater Trans. B
46
(
1
),
316
327
(
2015
).
48.
J. M.
Andreas
,
E. A.
Hauser
, and
W. B.
Tucker
, “
Boundary tension by pendant drops
,”
J. Phys. Chem.
42
(
7
),
1001
1019
(
1938
).
49.
F. K.
Hansen
and
G.
Rødsrud
, “
Surface tension by pendant drop. I. A fast standard instrument using computer image analysis
,”
J. Colloid Interface Sci.
141
(
1
),
1
9
(
1991
).
50.
J.
Kim
,
H.
Schoeller
,
J.
Cho
, and
S.
Park
, “
Effect of oxidation on indium solderability
,”
J. Electron. Mater.
37
(
4
),
483
489
(
2008
).
51.
L.
Leontie
,
M.
Caraman
,
M.
Alexe
, and
C.
Harnagea
, “
Structural and optical characteristics of bismuth oxide thin films
,”
Surf. Sci.
507–510
,
480
485
(
2002
).
52.
H.
Li
,
S.
Mei
,
L.
Wang
,
Y.
Gao
, and
J.
Liu
, “
Splashing phenomena of room temperature liquid metal droplet striking on the pool of the same liquid under ambient air environment
,”
Int. J. Heat Fluid Flow
47
,
1
8
(
2014
).
53.
T.
Liu
,
P.
Sen
, and
C. J.
Kim
, “
Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices
,”
J. Microelectromech. Syst.
21
(
2
),
443
450
(
2012
).
54.
M. D.
Dickey
, “
Emerging applications of liquid metals featuring surface oxides
,”
ACS Appl. Mater. Interfaces
6
(
21
),
18369
18379
(
2014
).
55.
A. A.
Ranger
and
J. A.
Nicholls
, “
Aerodynamic shattering of liquid drops
,”
AIAA J.
7
(
2
),
285
290
(
1969
).
56.
H.
Zhao
,
H.
Liu
,
W.
Li
, and
J.
Xu
, “
Morphological classification of low viscosity drop bag breakup in a continuous air jet stream
,”
Phys. Fluids
22
(
11
),
114103
(
2010
).
57.
J.
Kim
,
J. K.
Lee
, and
K. M.
Lee
, “
Accurate image super-resolution using very deep convolutional networks
,” in
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(
IEEE
,
2016
), pp.
1646
1654
.
58.
N. N.
Greenwood
and
A.
Earnshaw
,
Chemistry of the Elements
(
Elsevier
,
2012
).
59.
N.
Ciftci
,
N.
Ellendt
,
G.
Coulthard
,
E.
Soares Barreto
,
L.
Mädler
, and
V.
Uhlenwinkel
, “
Novel cooling rate correlations in molten metal gas atomization
,”
Metall. Mater. Trans. B
50
(
2
),
666
677
(
2019
).
60.
T.
Daeneke
,
K.
Khoshmanesh
,
N.
Mahmood
 et al, “
Liquid metals: Fundamentals and applications in chemistry
,”
Chem. Soc. Rev.
47
(
11
),
4073
4111
(
2018
).
61.
S.
Markus
,
U.
Fritsching
, and
K.
Bauckhage
, “
Jet break up of liquid metal in twin fluid atomisation
,”
Mater. Sci. Eng. A
326
(
1
),
122
133
(
2002
).
62.
J.
Mi
,
R. S.
Figliola
, and
I. E.
Anderson
, “
A numerical investigation of gas flow effects on high-pressure gas atomization due to melt tip geometry variation
,”
Metall. Mater. Trans. B
28
(
5
),
935
941
(
1997
).
63.
K.
Hanthanan Arachchilage
,
M.
Haghshenas
,
S.
Park
 et al, “
Numerical simulation of high-pressure gas atomization of two-phase flow: Effect of gas pressure on droplet size distribution
,”
Adv. Powder Technol.
30
(
11
),
2726
2732
(
2019
).
64.
S. P.
Mates
,
S. D.
Ridder
,
F. S.
Biancaniello
, and
T.
Zahrah
, “
Vacuum-assisted gas atomization of liquid metal
,”
Atomization Sprays
22
(
7
),
581
601
(
2012
).
65.
N.
Zeoli
and
S.
Gu
, “
Computational simulation of metal droplet break-up, cooling and solidification during gas atomisation
,”
Comput. Mater. Sci.
43
(
2
),
268
278
(
2008
).
66.
J. S.
Thompson
,
O.
Hassan
,
S. A.
Rolland
, and
J.
Sienz
, “
The identification of an accurate simulation approach to predict the effect of operational parameters on the particle size distribution (PSD) of powders produced by an industrial close-coupled gas atomiser
,”
Powder Technol.
291
,
75
85
(
2016
).
67.
M. R.
Ridolfi
and
P.
Folgarait
, “
Numerical modeling of secondary breakup in molten metals gas-atomization using dimensionless analysis
,”
Int. J. Multiphase Flow
132
,
103431
(
2020
).
68.
E.
Villermaux
and
B.
Bossa
, “
Single-drop fragmentation determines size distribution of raindrops
,”
Nat. Phys.
5
(
9
),
697
702
(
2009
).
69.
D. D.
Joseph
,
J.
Belanger
, and
G.
Beavers
, “
Breakup of a liquid drop suddenly exposed to a high speed airstream
,”
Int. J. Multiphase Flow
25
,
1263
1303
(
1999
).
70.
T. G.
Theofanous
,
G. J.
Li
, and
T. N.
Dinh
, “
Aerobreakup in rarefied supersonic gas flows
,”
J. Fluids Eng.
126
(
4
),
516
(
2004
).
You do not currently have access to this content.