This article reports experimental insights into the physics of water entry of hydrophobic spheres. In the set of experiments, parameters such as sphere density, diameter, and impact velocity are varied. The trajectory of the sphere after impact, the dynamics of trapped air-cavity, including the cavity formation, and the retraction analysis are given. Furthermore, analysis of the Worthington-jet, the cavity ripple, and early bubble shedding after the air-cavity detachment is carried out. At the location of cavity closure, radial expansion and contraction behavior are reported for the case of the shallow seal (near the air–water interface), while for the deep seal, only one such behavior is observed. Further, five cavity shapes are recorded based on the cavity retraction behavior (i.e., shallow, deep seal), namely, conical shape, slender-cone shape, telescopic shape, spearhead shape, and the thick spearhead shape. The radial dynamics and radial surface energy analysis are reported at various locations on these cavity shapes to find that the thick spearhead cavities hold the most cross-sectional surface energy. The slender-cone shaped cavity generates the fastest Worthington-jet, followed by the telescopic shaped cavities. The thick spearhead shaped cavities are reported to have the longest intact Worthington-jets, followed by the spearhead shaped cavities. Finally, a new regime map is presented for single ripple and multiple ripple behaviors at the time of retraction in the wake of descending spheres. A bubble shedding behavior has also been characterized as the most frequent bubble shedding for shallow seal and associated longer bubble length compared to the other cases.

1.
A. M.
Worthington
and
R. S.
Cole
, “
Impact with a liquid surface, studied by the aid of instantaneous photography
,”
Philos. Trans. R. Soc. London Ser. A
189
,
137
148
(
1897
).
2.
A. M.
Worthington
,
A Study of Splashes
(
Longmans, Green, and Company
,
1908
).
3.
H.
Wagner
, “
Phenomena associated with impacts and sliding on liquid surfaces
,”
Z. Angew. Math. Mech.
12
(
4
),
193
215
(
1932
).
4.
A. A.
Korobkin
and
V. V.
Pukhnachov
, “
Initial stage of water impact
,”
Annu. Rev. Fluid Mech.
20
(
1
),
159
185
(
1988
).
5.
A. L.
Yarin
,
I. V.
Roisman
, and
C.
Tropea
,
Collision Phenomena in Liquids and Solids
(
Cambridge University Press
,
2017
).
6.
T.
von Kàrmàn
, “
The impact on seaplane floats during landing
,” NACA Technical Note 321 (
1929
).
7.
O. M.
Faltinsen
and
R.
Zhao
, “
Water entry of ship sections and axisymmetric bodies
,” in
AGARD FDP and Ukraine Institute of Hydromechanics Workshop on High-Speed Body Motion in Water
, Kiev, Ukraine (
1997
).
8.
S.
Abrate
, “
Hull slamming
,”
Appl. Mech. Rev.
64
(
6
),
060803
(
2011
).
9.
A.
May
, “
Vertical entry of missiles into water
,”
J. Appl. Phys.
23
(
12
),
1362
1372
(
1952
).
10.
J. W.
Glasheen
and
T. A.
McMahon
, “
A hydrodynamic model of locomotion in the basilisk lizard
,”
Nature
380
(
6572
),
340
(
1996
).
11.
C.
Clanet
,
F.
Hersen
, and
L.
Bocquet
, “
Secrets of successful stone-skipping
,”
Nature
427
(
6969
),
29
(
2004
).
12.
T. T.
Truscott
, “
Cavity dynamics of water entry for spheres and ballistic projectiles
,” Ph.D. thesis (
MIT
,
2009
).
13.
T. T.
Truscott
,
B. P.
Epps
, and
A. H.
Techet
, “
Unsteady forces on spheres during free-surface water entry
,”
J. Fluid Mech.
704
,
173
210
(
2012
).
14.
T. T.
Truscott
,
B. P.
Epps
, and
J.
Belden
, “
Water entry of projectiles
,”
Annu. Rev. Fluid Mech.
46
,
355
378
(
2014
).
15.
J. M.
Aristoff
,
T. T.
Truscott
,
A. H.
Techet
, and
J. W. M.
Bush
, “
The water entry of decelerating spheres
,”
Phys. Fluids
22
(
3
),
032102
(
2010
).
16.
J. M.
Aristoff
,
T. T.
Truscott
,
A. H.
Techet
, and
J. W. M.
Bush
, “
The water-entry cavity formed by low Bond number impacts
,”
Phys. Fluids
20
(
9
),
091111
(
2008
).
17.
J. M.
Aristoff
and
J. W. M.
Bush
, “
Water entry of small hydrophobic spheres
,”
J. Fluid Mech.
619
,
45
78
(
2009
).
18.
D.
Lohse
,
R.
Bergmann
,
R.
Mikkelsen
,
C.
Zeilstra
,
D.
van der Meer
,
M.
Versluis
,
K.
van der Weele
,
M.
van der Hoef
, and
H.
Kuipers
, “
Impact on soft sand: Void collapse and jet formation
,”
Phys. Rev. Lett.
93
(
19
),
198003
(
2004
).
19.
K. G.
Bodily
,
S. J.
Carlson
, and
T. T.
Truscott
, “
The water entry of slender axisymmetric bodies
,”
Phys. Fluids
26
(
7
),
072108
(
2014
).
20.
V.
Duclaux
,
F.
Caille
,
C.
Duez
,
C.
Ybert
,
L.
Bocquet
, and
C.
Clanet
, “
Dynamics of transient cavities
,”
J. Fluid Mech.
591
,
1
19
(
2007
).
21.
S.
Gekle
,
A.
van der Bos
,
R.
Bergmann
,
D.
van der Meer
, and
D.
Lohse
, “
Non-continuous Froude number scaling for the closure depth of a cylindrical cavity
,”
Phys. Rev. Lett.
100
(
8
),
084502
(
2008
).
22.
R.
Bergmann
,
D.
van der Meer
,
M.
Stijnman
,
M.
Sandtke
,
A.
Prosperetti
, and
D.
Lohse
, “
Giant bubble pinch-off
,”
Phys. Rev. Lett.
96
(
15
),
154505
(
2006
).
23.
R.
Bergmann
,
D.
Van Der Meer
,
S.
Gekle
,
A.
Van Der Bos
, and
D.
Lohse
, “
Controlled impact of a disk on a water surface: Cavity dynamics
,”
J. Fluid Mech.
633
,
381
409
(
2009
).
24.
J. W.
Glasheen
and
T. A.
McMahon
, “
Vertical water entry of disks at low Froude numbers
,”
Phys. Fluids
8
(
8
),
2078
2083
(
1996
).
25.
S.
Gekle
,
I. R.
Peters
,
J. M.
Gordillo
,
D.
van der Meer
, and
D.
Lohse
, “
Supersonic air flow due to solid-liquid impact
,”
Phys. Rev. Lett.
104
(
2
),
024501
(
2010
).
26.
J. O.
Marston
and
S. T.
Thoroddsen
, “
Ejecta evolution during cone impact
,”
J. Fluid Mech.
752
,
410
438
(
2014
).
27.
J. O.
Marston
,
I. U.
Vakarelski
, and
S. T.
Thoroddsen
, “
Bubble entrapment during sphere impact onto quiescent liquid surfaces
,”
J. Fluid Mech.
680
,
660
670
(
2011
).
28.
C.
Duez
,
C.
Ybert
,
C.
Clanet
, and
L.
Bocquet
, “
Making a splash with water repellency
,”
Nat. Phys.
3
(
3
),
180
(
2007
).
29.
B. C.-W.
Tan
,
J.
Vlaskamp
,
P.
Denissenko
, and
P. J.
Thomas
, “
Cavity formation in the wake of falling spheres submerging into a stratified two-layer system of immiscible liquids
,”
J. Fluid Mech.
790
,
33
56
(
2016
).
30.
L. B.
Smolka
and
C. K.
McLaughlin
, “
Sphere entry through an oil lens floating on water
,”
Phys. Rev. Fluids
4
(
4
),
044001
(
2019
).
31.
L.
Yi
,
S.
Li
,
H.
Jiang
,
D.
Lohse
,
C.
Sun
, and
V.
Mathai
, “
Water entry of spheres into a rotating liquid
,”
J. Fluid Mech.
912
,
R1
(
2021
).
32.
I. U.
Vakarelski
,
J. O.
Marston
,
D. Y. C.
Chan
, and
S. T.
Thoroddsen
, “
Drag reduction by Leidenfrost vapor layers
,”
Phys. Rev. Lett.
106
(
21
),
214501
(
2011
).
33.
J. O.
Marston
,
I. U.
Vakarelski
, and
S. T.
Thoroddsen
, “
Cavity formation by the impact of Leidenfrost spheres
,”
J. Fluid Mech.
699
,
465
488
(
2012
).
34.
S. I.
Sharker
,
S.
Holekamp
,
M. M.
Mansoor
,
F. E.
Fish
, and
T. T.
Truscott
, “
Water entry impact dynamics of diving birds
,”
Bioinspiration Biomimetics
14
(
5
),
056013
(
2019
).
35.
S. T.
Thoroddsen
and
A. Q.
Shen
, “
Granular jets
,”
Phys. Fluids
13
(
1
),
4
6
(
2001
).
36.
H. N.
Oguz
and
A.
Prosperetti
, “
Dynamics of bubble growth and detachment from a needle
,”
J. Fluid Mech.
257
,
111
145
(
1993
).
37.
J. C.
Burton
,
R.
Waldrep
, and
P.
Taborek
, “
Scaling and instabilities in bubble pinch-off
,”
Phys. Rev. Lett.
94
(
18
),
184502
(
2005
).
38.
N. B.
Speirs
,
M. M.
Mansoor
,
J.
Belden
, and
T. T.
Truscott
, “
Water entry of spheres with various contact angles
,”
J. Fluid Mech.
862
(
3
),
R3
(
2019
).
39.
J. M.
McKown
, “
An experimental study of Worthington jet formation after impact of solid spheres,” Ph.D.
thesis (
Massachusetts Institute of Technology
,
2011
).
40.
S.
Gekle
,
J. M.
Gordillo
,
D.
van der Meer
, and
D.
Lohse
, “
High-speed jet formation after solid object impact
,”
Phys. Rev. Lett.
102
(
3
),
034502
(
2009
).
41.
D. A.
Watson
,
J. L.
Stephen
, and
A. K.
Dickerson
, “
Jet amplification and cavity formation induced by penetrable fabrics in hydrophilic sphere entry
,”
Phys. Fluids
30
(
8
),
082109
(
2018
).
42.
R.
Mikkelsen
,
M.
Versluis
,
E.
Koene
,
G.-W.
Bruggert
,
D.
van der Meer
,
K.
van der Weele
, and
D.
Lohse
, “
Granular eruptions: Void collapse and jet formation
,”
Phys. Fluids
14
(
9
),
S14
S14
(
2002
).
43.
G.
Caballero
,
R.
Bergmann
,
D.
van der Meer
,
A.
Prosperetti
, and
D.
Lohse
, “
Role of air in granular jet formation
,”
Phys. Rev. Lett.
99
(
1
),
018001
(
2007
).
44.
J. O.
Marston
and
S. T.
Thoroddsen
, “
Apex jets from impacting drops
,”
J. Fluid Mech.
614
,
293
302
(
2008
).
45.
K.
Yamamoto
,
M.
Motosuke
, and
S.
Ogata
, “
Initiation of the Worthington jet on the droplet impact
,”
Appl. Phys. Lett.
112
(
9
),
093701
(
2018
).
46.
C.-Y.
Lai
,
J.
Eggers
, and
L.
Deike
, “
Bubble bursting: Universal cavity and jet profiles
,”
Phys. Rev. Lett.
121
(
14
),
144501
(
2018
).
47.
M.
Sandtke
,
D.
van der Meer
,
M.
Versluis
, and
D.
Lohse
, “
Faraday, jets, and sand
,”
Phys. Fluids
15
(
9
),
S7
(
2003
).
48.
B. W.
Zeff
,
B.
Kleber
,
J.
Fineberg
, and
D. P.
Lathrop
, “
Singularity dynamics in curvature collapse and jet eruption on a fluid surface
,”
Nature
403
(
6768
),
401
404
(
2000
).
49.
A.
Antkowiak
,
N.
Bremond
,
S. L.
Dizès
, and
E.
Villermaux
, “
Short-term dynamics of a density interface following an impact
,”
J. Fluid Mech.
577
,
241
250
(
2007
).
50.
Z. Q.
Yang
,
Y. S.
Tian
, and
S. T.
Thoroddsen
, “
Multitude of dimple shapes can produce singular jets during the collapse of immiscible drop-impact craters
,”
J. Fluid Mech.
904
,
A19
(
2020
).
51.
A.
Vogel
,
W.
Lauterborn
, and
R.
Timm
, “
Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary
,”
J. Fluid Mech.
206
,
299
338
(
1989
).
52.
E. A.
Brujan
,
G. S.
Keen
,
A.
Vogel
, and
J. R.
Blake
, “
The final stage of the collapse of a cavitation bubble close to a rigid boundary
,”
Phys. Fluids
14
(
1
),
85
92
(
2002
).
53.
P.
Cui
,
A.-M.
Zhang
,
S.
Wang
, and
B. C.
Khoo
, “
Ice breaking by a collapsing bubble
,”
J. Fluid Mech.
841
,
287
309
(
2018
).
54.
S.-M.
Li
,
A.-M.
Zhang
,
Q. X.
Wang
, and
S.
Zhang
, “
The jet characteristics of bubbles near mixed boundaries
,”
Phys. Fluids
31
(
10
),
107105
(
2019
).
55.
L.
Rayleigh
, “
XIX. On the instability of cylindrical fluid surfaces
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
34
(
207
),
177
180
(
1892
).
56.
J.
Eggers
and
E.
Villermaux
, “
Physics of liquid jets
,”
Rep. Prog. Phys.
71
(
3
),
036601
(
2008
).
57.
J. M.
Gordillo
and
S.
Gekle
, “
Generation and breakup of Worthington jets after cavity collapse. Part 2. Tip breakup of stretched jets
,”
J. Fluid Mech.
663
,
331
346
(
2010
).
58.
S.
Gekle
and
J. M.
Gordillo
, “
Generation and breakup of Worthington jets after cavity collapse. Part 1. Jet formation
,”
J. Fluid Mech.
663
,
293
330
(
2010
).
59.
T.
Grumstrup
,
J. B.
Keller
, and
A.
Belmonte
, “
Cavity ripples observed during the impact of solid objects into liquids
,”
Phys. Rev. Lett.
99
(
11
),
114502
(
2007
).
60.
Q.
Zhang
,
Z.
Zong
,
T. Z.
Sun
,
Z. Y.
Chen
, and
H. T.
Li
, “
Experimental study of the evolution of water-entry cavity bubbles behind a hydrophobic sphere
,”
Phys. Fluids
32
(
6
),
062109
(
2020
).
61.
H. R. A.
Mallock
, “
Sounds produced by drops falling on water
,”
Proc. R. Soc. London Ser. A
95
(
667
),
138
143
(
1918
).
62.
M.
Minnaert
, “
XVI. On musical air-bubbles and the sounds of running water
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
16
(
104
),
235
248
(
1933
).
63.
J.-F.
Louf
,
B.
Chang
,
J.
Eshraghi
,
A.
Mituniewicz
,
P. P.
Vlachos
, and
S.
Jung
, “
Cavity ripple dynamics after pinch-off
,”
J. Fluid Mech.
850
,
611
623
(
2018
).
64.
M. M.
Mansoor
,
J. O.
Marston
,
I. U.
Vakarelski
, and
S. T.
Thoroddsen
, “
Water entry without surface seal: Extended cavity formation
,”
J. Fluid Mech.
743
,
295
326
(
2014
).
65.
M. M.
Mansoor
,
I. U.
Vakarelski
,
J. O.
Marston
,
T. T.
Truscott
, and
S. T.
Thoroddsen
, “
Stable-streamlined and helical cavities following the impact of Leidenfrost spheres
,”
J. Fluid Mech.
823
,
716
754
(
2017
).
66.
S. D.
Guleria
,
A.
Dhar
, and
D. V.
Patil
, “
Effects of orientation, lateral dimension, and release height on air-entraining cavity dynamics: Water entry of a solid cylinder
,”
Gallery of Fluid Motion, 71th Annual Meeting of the APS Division of Fluid Dynamics
, November 18–20,
2018
.
67.
R. J.
Moffat
, “
Describing the uncertainties in experimental results
,”
Exp. Therm. Fluid Sci.
1
(
1
),
3
17
(
1988
).
68.
S. T.
Thoroddsen
,
T. G.
Etoh
,
K.
Takehara
, and
Y.
Takano
, “
Impact jetting by a solid sphere
,”
J. Fluid Mech.
499
,
139
148
(
2004
).
You do not currently have access to this content.