Nanofluids play an important role in many different industries for an improvement of heat transfer. The modeling and simulation of such fluids is developing continuously. Two important models for studying nanofluids are mixture (or single-phase) and two-phase (or Buongiorno) forms, which have been examined in various ways. Non-Newtonian behavior of nanofluids (shear-thinning and viscoplasticity) has been observed in experimental tests and simulated in several studies. However, a lattice Boltzmann method (LBM), which can employ either model depending on the particular non-Newtonian constitutive equation, has not been considered to date within the suite of available numerical methods. Here, we propose a comprehensive LBM to simulate both Newtonian and non-Newtonian nanofluids. The approach has the potential to incorporate any format of extra tensor directly and is independent to the relaxation time; the upshot is that our method is appropriate for studying non-Newtonian nanofluids. The derivations for both models are presented and discussed in some detail. To evaluate the proposed method, it was compared with previous studies into a benchmark problem, natural convection in a square enclosure filled with Newtonian nanofluids and non-Newtonian fluids. Then, the applied macroscopic and LBM equations, using the power-law and viscoplastic models, for the benchmark are derived and the results are presented.

1.
S. U. S.
Choi
and
J.
Eastman
, “
Enhancing thermal conductivity of fluids with nanoparticles
,” in
ASME International Mechanical Engineering Congress & Exposition
,
1995
.
2.
S.
Kumar Das
,
S. U. S.
Choi
, and
H. E.
Patel
, “
Heat transfer in nanofluids—A review
,”
Heat Transfer Eng.
27
,
3–19
(
2006
).
3.
L.
Qiu
,
N.
Zhu
,
Y.
Feng
,
E. E.
Michaelides
,
G.
Zyia
,
D.
Jing
,
X.
Zhang
,
P. M.
Norris
,
C. N.
Markides
, and
O.
Mahian
, “
A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids
,”
Phys. Rep.
843
,
1–81
(
2020
).
4.
K.
Bashirnezhad
,
S.
Bazri
,
M. R.
Safaei
,
M.
Goodarzi
,
M.
Dahari
,
O.
Mahian
,
A. S.
Dalkiliça
, and
S.
Wongwises
, “
Viscosity of nanofluids: A review of recent experimental studies
,”
Int. Commun. Heat Mass Transfer
73
,
114
(
2016
).
5.
R.
Saidura
,
K. Y.
Leong
, and
H. A.
Mohammad
, “
A review on applications and challenges of nanofluids
,”
Renewable Sustainable Energy Rev.
15
,
1646
(
2011
).
6.
S. M.
Vanaki
,
P.
Ganesan
, and
H. A.
Mohammed
, “
Numerical study of convective heat transfer of nanofluids: A review
,”
Renewable Sustainable Energy Rev.
54
,
1212
(
2016
).
7.
K.
Khanafer
,
K.
Vafai
, and
M.
Lightstone
, “
Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids
,”
Int. J. Heat Mass Transfer
46
,
3639
(
2003
).
8.
R.
Jou
and
S.
Tzeng
, “
Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures
,”
Int. Commun. Heat Mass Transfer
33
,
727
(
2006
).
9.
H. F.
Oztop
and
E.
Abu-Nada
, “
Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids
,”
Int. J. Heat Fluid Flow
29
,
1326
(
2008
).
10.
M. M.
Rashidi
,
M.
Sadri
, and
M. A.
Sheremet
, “
Numerical simulation of hybrid nanofluid mixed convection in a lid-driven square cavity with magnetic field using high-order compact scheme
,”
Nanomaterials
11
,
2250
(
2021
).
11.
Y.
Ma
,
R.
Mohebbi
,
M. M.
Rashidi
, and
Z.
Yang
, “
Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure
,”
Int. J. Heat Mass Transfer
130
,
123
(
2019
).
12.
M. M.
Rashidi
,
M.
Nasiri
,
M.
Khezerloo
, and
N.
Laraqi
, “
Numerical investigation of magnetic field effect on mixed convection heat transfer of nanofluid in a channel with sinusoidal walls
,”
J. Magn. Magn. Mater.
401
,
159
(
2016
).
13.
Y.
Ding
,
H.
Alias
,
D.
sheng
,
W.
Richard
, and
A.
Williams
, “
Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids)
,”
Int. J. Heat Mass Transfer
49
,
240
(
2006
).
14.
B.
Aladag
,
S.
Halelfadl
,
N.
Doner
,
T.
Maré
,
S.
Duret
, and
P.
Estellé
, “
Experimental investigations of the viscosity of nanofluids at low temperatures
,”
Appl. Energy
97
,
876
(
2012
).
15.
A.
Ouahouah
,
N.
Labsi
,
X.
Chesneau
, and
Y.
Benkahla
, “
Natural convection within a non-uniformly heated cavity partly filled with a shear-thinning nanofluid and partly with air
,”
J. Non-Newtonian Fluid Mech.
289
,
104490
(
2021
).
16.
A. V.
Minakov
,
V. Y.
Rudyak
, and
M. I.
Pryazhnikov
, “
Rheological behavior of water and ethylene glycol based nanofluids containing oxide nanoparticles
,”
Colloids Surf. A
554
,
279
(
2018
).
17.
S.
Ouyahia
,
Y.
Benkahla
,
W.
Berabou
, and
A.
Boudiaf
, “
Numerical study of the flow in a square cavity filled with carbopol-TiO2 nanofluid
,”
Powder Technol.
311
,
101
(
2017
).
18.
S.
Lahlou
,
N.
Labsi
,
Y. K.
Benkahla
,
A.
Boudiaf
, and
S.
Ouyahia
, “
Flow of viscoplastic fluids containing hybrid nanoparticles: Extended Buongiorno's model
,”
J. Non-Newtonian Fluid Mech.
281
,
104308
(
2020
).
19.
J.
Buongiorno
, “
Convective transport in nanofluids
,”
J. Heat Transfer
128
,
240
(
2006
).
20.
D. Y.
Tzou
, “
Instability of nanofluids in natural convection
,”
ASME J. Heat Transfer
130
,
072401
(
2008
).
21.
D. Y.
Tzou
, “
Thermal instability of nanofluids in natural convection
,”
Int. J. Heat Mass Transfer
51
,
2967
(
2008
).
22.
M.
Corcione
,
M.
Cianfrini
, and
A.
Quintino
, “
Two-phase mixture modeling of natural convection of nanofluids with temperature-dependent properties
,”
Int. J. Therm. Sci.
71
,
182
(
2013
).
23.
D. A.
Nield
and
A. V.
Kuznetsov
, “
The onset of convection in a horizontal nanofluid layer of finite depth
,”
Eur. J. Mech.-B
29
,
217
(
2010
).
24.
D. A.
Nield
and
A. V.
Kuznetsov
, “
The onset of convection in a horizontal nanofluid layer of finite depth: A revised model
,”
Int. J. Heat Mass Transfer
77
,
915
(
2014
).
25.
Z.
Haddad
,
E.
Abu-Nada
,
H. F.
Oztop
, and
A.
Mataoui
, “
Natural convection in nanofluids: Are the thermophoresis and Brownian motion effects significant in nanofluid heat transfer enhancement?
,”
Int. J. Therm. Sci.
57
,
152
(
2012
).
26.
D. A.
Nield
and
A. V.
Kuznetsov
, “
The Cheng–Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid
,”
Int. J. Heat Mass Transfer
52
,
5792
(
2009
).
27.
D. A.
Nield
and
A. V.
Kuznetsov
, “
Thermal instability in a porous medium layer saturated by a nanofluid
,”
Int. J. Heat Mass Transfer
52
,
5796
(
2009
).
28.
M. A.
Sheremet
,
I.
Pop
, and
M. M.
Rahman
, “
Three-dimensional natural convection in a porous enclosure filled with a nanofluid using Buongiorno's mathematical model
,”
Int. J. Heat Mass Transfer
82
,
396
(
2015
).
29.
J.
Kang
,
F.
Zhou
,
W.
Tan
, and
T.
Xia
, “
Thermal instability of non-homogeneous power-law nanofluid in a porous layer with horizontal through
,”
J. Non-Newtonian Fluid Mech.
213
,
50–56
(
2014
).
30.
S.
Chen
and
G. D.
Doolen
, “
Lattice Boltzmann method for fluid flows
,”
Annu. Rev. Fluid Mech.
30
,
329
(
1998
).
31.
S.
Succi
,
The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond
(
Oxford University Press
,
2001
).
32.
A. A.
Mohamad
,
Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes
(
Springer
,
2011
).
33.
Z.
Guo
,
B.
Shi
, and
N.
Wang
, “
Lattice BGK model for incompressible Navier-Stokes equation
,”
J. Comput. Phys.
165
,
288
306
(
2000
).
34.
Z.
Chen
,
C.
Shu
,
L. M.
Yang
,
X.
Zhao
, and
N. Y.
Liu
, “
Immersed boundary-simplified thermal lattice Boltzmann method for incompressible thermal flows
,”
Phys. Fluids
32
,
013605
(
2020
).
35.
O.
Ilyin
, “
Gaussian Lattice Boltzmann method and its applications to rarefied flows
,”
Phys. Fluids
32
,
012007
(
2020
).
36.
Q.
Li
,
Z.
Lu
,
D.
Zhou
,
X.
Niu
,
T.
Guo
, and
B.
Du
, “
Unified simplified multiphase lattice Boltzmann method for ferrofluid flows and its application
,”
Phys. Fluids
32
,
093302
(
2020
).
37.
Y.
Zong
,
C.
Zhang
,
H.
Liang
,
L.
Wang
, and
J.
Xu
, “
Modeling surfactant-laden droplet dynamics by lattice Boltzmann method
,”
Phys. Fluids
32
,
122105
(
2020
).
38.
G.
Farag
,
S.
Zhao
,
T.
Coratger
,
P.
Boivin
,
G.
Chiavassa
, and
P.
Sagaut
, “
A pressure-based regularized lattice-Boltzmann method for the simulation of compressible flows
,”
Phys. Fluids
32
,
066106
(
2020
).
39.
L.
Xu
,
X.
Yu
, and
K.
Regenauer-Lieb
, “
An immersed boundary-lattice Boltzmann method for gaseous slip flow
,”
Phys. Fluids
32
,
012002
(
2020
).
40.
Y.
Xuan
and
Z.
Yao
, “
Lattice Boltzmann model for nanofluids
,”
Heat Mass Transfer
41
,
199
(
2004
).
41.
G. H. R.
Kefayati
,
S. F.
Hosseinizadeh
,
M.
Gorji
, and
H.
Sajjadi
, “
Lattice Boltzmann simulation of natural convection in tall enclosures using water/SiO2 nanofluid
,”
Int. Commun. Heat Mass Transfer
38
,
798
(
2011
).
42.
H.
Nemati
,
M.
Farhadi
,
K.
Sedighi
,
E.
Fattahi
, and
A. A. R.
Darzi
, “
Lattice Boltzmann simulation of nanofluid in lid-driven cavity
,”
Int. Commun. Heat Mass Transfer
37
,
1528
(
2010
).
43.
H.
Sajjadi
,
M.
Gorji
,
G. H. R.
Kefayati
, and
D. D.
Ganji
, “
Lattice Boltzmann simulation of turbulent natural convection in tall enclosures using Cu/Water nanofluid
,”
Numer. Heat Transfer, Part A
62
,
512
(
2012
).
44.
E.
Fattahi
,
M.
Farhadi
,
K.
Sedighi
, and
H.
Nemati
, “
Lattice Boltzmann simulation of natural convection heat transfer in nanofluids
,”
Int. J. Therm. Sci.
52
,
137
(
2012
).
45.
W. N.
Zhou
,
Y. Y.
Yan
, and
J. L.
Xu
, “
A lattice Boltzmann simulation of enhanced heat transfer of nanofluids
,”
Int. Commun. Heat Mass Transfer
55
,
113
(
2014
).
46.
N. A.
Che Sidik
and
R.
Mamat
, “
Recent progress on lattice Boltzmann simulation of nanofluids: A review
,”
Int. Commun. Heat Mass Transfer
66
,
11–22
(
2015
).
47.
H.
Sajjadi
,
A. A.
Delouie
,
M.
Atashafrooz
, and
M.
Sheikholeslami
, “
Double MRT lattice Boltzmann simulation of 3-D MHD natural convection in a cubic cavity with sinusoidal temperature distribution utilizing nanofluid
,”
Int. J. Heat Mass Transfer
126
,
489
(
2018
).
48.
O.
Aliu
,
H.
Sakidin
,
J.
Foroozesh
, and
N.
Yahya
, “
Lattice Boltzmann application to nanofluids dynamics—A review
,”
J. Mol. Liq.
300
,
112284
(
2020
).
49.
Y.
Ma
and
Z.
Yang
, “
Simplified and highly stable thermal Lattice Boltzmann method simulation of hybrid nanofluid thermal convection at high Rayleigh numbers
,”
Phys. Fluids
32
,
012009
(
2020
).
50.
R.
Mohebbi
,
M.
Izadi
, and
A. J.
Chamkha
, “
Heat source location and natural convection in a C-shaped enclosure saturated by a nanofluid
,”
Phys. Fluids
29
,
122009
(
2017
).
51.
Y.
Ma
,
R.
Mohebbi
,
M. M.
Rashidi
, and
Z.
Yang
, “
Study of nanofluid forced convection heat transfer in a bent channel by means of lattice Boltzmann method
,”
Phys. Fluids
30
,
032001
(
2018
).
52.
A. A.
Mehrizi
,
F.
Besharati
,
O.
Jahanian
, and
H.
Hassanzadeh Afrouzi
, “
Numerical investigation of conjugate heat transfer in a microchannel with a hydrophobic surface utilizing nanofluids under a magnetic field
,”
Phys. Fluids
33
,
052002
(
2021
).
53.
R.
Soleimani
,
M.
Zargartalebi
,
J.
Azaiez
, and
I. D.
Gates
, “
Hydrodynamic analysis of nanofluid's convective heat transfer in channels with extended surfaces
,”
Phys. Fluids
33
,
012011
(
2021
).
54.
M.
Zargartalebi
and
J.
Azaiez
, “
Mesoscopic study of miscible nanoflow instabilities
,”
Phys. Fluids
30
,
024105
(
2018
).
55.
S. C.
Fu
,
W. W. F.
Leung
, and
R. M. C.
So
, “
A lattice Boltzmann method based numerical scheme for microchannel Flows
,”
J. Fluids Eng.
131
,
081401
(
2009
).
56.
S. C.
Fu
and
R. M. C.
So
, “
Modeled lattice Boltzmann equation and the constant-density assumption
,”
AIAA J.
47
,
3038
3042
(
2009
).
57.
S. C.
Fu
,
R. M. C.
So
, and
R. M. C.
Leung
, “
Linearized-Boltzmann-type-equation-based finite difference method for thermal incompressible flow
,”
Comput. Fluids
69
,
67
80
(
2012
).
58.
R. R.
Huilgol
and
G. H. R.
Kefayati
, “
From mesoscopic models to continuum mechanics: Newtonian and non-Newtonian fluids
,”
J. Non-Newtonian Fluid Mech.
233
,
146
154
(
2016
).
59.
P. D.
Lax
and
B.
Wendroff
, “
Systems of conservation laws
,”
Commun. Pure Appl. Math.
13
,
217
(
1960
).
60.
L.
Sundar
,
E.
Ramana
,
M.
Singh
, and
A. D.
Sousa
, “
Viscosity of low volume concentrations of magnetic Fe3O4 nanoparticles dispersed in ethylene glycol and water mixture
,”
Chem. Phys. Lett.
554
,
236
(
2012
).
61.
T.
Phuoc
,
M.
Massoudi
, and
R.
Chen
, “
Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan
,”
Int. J. Therm. Sci.
50
,
12–18
(
2011
).
62.
P.
Garg
,
J.
Alvarado
,
C.
Marsh
,
T.
Carlson
,
D.
Kessler
, and
K.
Annamalai
, “
An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids
,”
Int. J. Heat Mass Transfer
52
,
5090
(
2009
).
63.
L.
Maillaud
,
P.
Poulin
,
M.
Pasquali
, and
C.
Zakri
, “
Effect of the rheological properties of carbon nanotube dispersions on the processing and properties of transparent conductive electrodes
,”
Langmuir
31
,
5928
(
2015
).
64.
C.
Nguyen
,
F.
Desgranges
,
N.
Galanis
,
G.
Roy
,
T.
Maré
,
S.
Boucher
 et al., “
Viscosity data for Al2O3-water nanofluid-hysteresis: Is heat transfer enhancement using nanofluids reliable?
,”
Int. J. Therm. Sci.
47
,
103
(
2008
).
65.
C. T.
Nguyena
,
F.
Desgranges
,
G.
Roy
,
N.
Galanis
,
T.
Maré
,
S.
Boucher
, and
H. A.
Mintsa
, “
Temperature and particle-size dependent viscosity data for water-based nanofluids—hysteresis phenomenon
,”
Int. J. Heat Fluid Flow
28
,
1492
(
2007
).
66.
G. B.
Kim
,
J. M.
Hyun
, and
H. S.
Kwak
, “
Transient buoyant convection of a power-law non-Newtonian fluid in an enclosure
,”
Int. J. Heat Mass Transfer
46
,
3605
(
2003
).
67.
O.
Turan
,
A.
Sachdeva
,
R. J.
Poole
, and
N.
Chakraborty
, “
Laminar natural convection of power-law fluids in a square enclosure with differentially heated sidewalls subjected to constant wall heat flux
,”
J. Heat Transfer
134
,
122504
(
2012
).
68.
O.
Turan
,
A.
Sachdeva
,
N.
Chakraborty
, and
R. J.
Poole
, “
Laminar natural convection of power-law fluids in a square enclosure with differentially heated side walls subjected to constant Temperatures
,”
J. Non-Newtonian Fluid Mech.
166
,
1049
1063
(
2011
).
69.
L.
Khezzar
,
D.
Siginer
, and
I.
Vinogradov
, “
Natural convection of power law fluids in inclined cavities
,”
Int. J. Therm. Sci.
53
,
8–17
(
2012
).
70.
C.
Sasmal
,
A. K.
Gupta
, and
R. P.
Chhabra
, “
Natural convection heat transfer in a power-law fluid from a heated rotating cylinder in a square duct
,”
Int. J. Heat Mass Transfer
129
,
975
996
(
2019
).
71.
A. K.
Tiwari
and
R. P.
Chhabra
, “
Laminar natural convection in power-law liquids from a heated semi-circular cylinder with its flat side oriented downward
,”
Int. J. Heat Mass Transfer
58
,
553
567
(
2013
).
72.
R. R.
Huilgol
,
Fluid Mechanics of Viscoplasticity
(
Springer
,
2015
).
73.
D.
Cabaleiro
,
M. J.
Pastoriza-Gallego
,
C.
Gracia-Fernández
,
M. M.
Piñeiro
, and
L.
Lugo
, “
Rheological and volumetric properties of TiO2-ethylene glycol nanofluids
,”
Nanoscale Res. Lett.
8
,
286
(
2013
).
74.
R.
Shu
,
Y.
Gun
,
H.
Lv
, and
D.
Tan
, “
Preparation and rheological behavior of ethylene glycol-based TiO2 nanofluids
,”
Colloids Surf., A
509
,
86
(
2016
).
75.
G.
Zyla
,
J. P.
Vallejo
,
J.
Fal
, and
L.
Lugu
, “
Nanodiamonds—Ethylene glycol nanofluids: Experimental investigation of fundamental physical properties
,”
Int. J. Heat Mass Transfer
121
,
1201
(
2018
).
76.
R. R.
Huilgol
and
G. H. R.
Kefayati
, “
Natural convection problem in a Bingham fluid using the operator-splitting method
,”
J. Non-Newtonian Fluid Mech.
220
,
22
(
2015
).
77.
G. H. R.
Kefayati
and
R. R.
Huilgol
, “
Lattice Boltzmann Method for simulation of mixed convection of a Bingham fluid in a lid-driven cavity
,”
Int. J. Heat Mass Transfer
103
,
725
(
2016
).
78.
R. R.
Huilgol
and
G. H. R.
Kefayati
, “
A particle distribution function approach to the equations of continuum mechanics in Cartesian, cylindrical and spherical coordinates: Newtonian and non-Newtonian fluids
,”
J. Non-Newtonian Fluid Mech.
251
,
119
(
2018
).
79.
O.
Turan
,
N.
Chakraborty
, and
R. J.
Poole
, “
Laminar natural convection of Bingham fluids in a square enclosure with differentially heated side walls
,”
J. Non-Newtonian Fluid Mech.
165
,
901
(
2010
).
80.
G. R.
Kefayati
, “
Lattice Boltzmann simulation of double diffusive natural convection of viscoplastic fluids in a porous cavity
,”
Phys. Fluids
31
,
013105
(
2019
).
81.
G. R.
Kefayati
,
H.
Tang
, and
A.
Chan
, “
Immersed boundary-finite difference lattice Boltzmann method through fluid-structure interaction for viscoplastic fluids
,”
J. Fluids Struct.
83
,
238
(
2018
).
82.
G. R.
Kefayati
and
H.
Tang
, “
MHD mixed convection of viscoplastic fluids in different aspect ratios of a lid-driven cavity using LBM
,”
Int. J. Heat Mass Transfer
124
,
344
(
2018
).
83.
G. R.
Kefayati
and
H.
Tang
, “
Lattice Boltzmann simulation of viscoplastic fluids on natural convection in an inclined enclosure with inner cold circular/elliptical cylinders (Part I: One cylinder)
,”
Int. J. Heat Mass Transfer
123
,
1138
(
2018
).
84.
G. R.
Kefayati
, “
Double-diffusive natural convection and entropy generation of Bingham fluid in an inclined cavity
,”
Int. J. Heat Mass Transfer
116
,
762
(
2018
).
85.
G. R.
Kefayati
, “
Thermosolutal natural convection of viscoplastic fluids in an open porous cavity
,”
Int. J. Heat Mass Transfer
138
,
401
(
2019
).
86.
G. R.
Kefayati
, “
An immersed boundary-lattice Boltzmann method for thermal and thermo-solutal problems of Newtonian and non-Newtonian fluids
,”
Phys. Fluids
32
,
073103
(
2020
).
87.
G. R.
Kefayati
,
A.
Tolooiyan
,
A. P.
Bassom
, and
K.
Vafai
, “
A mesoscopic model for thermal-solutal problems of power-law fluids through porous media
,”
Phys. Fluids
33
,
033114
(
2021
).
You do not currently have access to this content.