The impact of complex media on the dynamics of active swimmers has gained a thriving interest in the research community for their prominent applications in various fields. This paper investigates the effect of viscoelasticity on the dynamics and aggregation of chemically powered sphere-dimers by using a coarse-grained hybrid mesoscopic simulation technique. The sphere-dimers perform active motion by virtue of the concentration gradient around the swimmer’s surface, produced by the chemical reaction at one end of the dimer. We observe that the fluid elasticity enhances translational and rotational motion of a single dimer; however, for a pair of dimers, clustering in a particular alignment is more pronounced. In the case of multiple dimers, the kinetics of cluster formation along with their propulsive nature is presented in detail. The key factors influencing the enhanced motility and the aggregation of dimers are the concentration gradients, hydrodynamic coupling, and the microstructures present in the system.

1.
J.
Li
,
V. V.
Singh
,
S.
Sattayasamitsathit
,
J.
Orozco
,
K.
Kaufmann
,
R.
Dong
,
W.
Gao
,
B.
Jurado-Sanchez
,
Y.
Fedorak
, and
J.
Wang
, “
Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents
,”
ACS Nano
8
,
11118
11125
(
2014
).
2.
S.
Ramaswamy
, “
The mechanics and statistics of active matter
,”
Annu. Rev. Condens. Matter Phys.
1
,
323
345
(
2010
).
3.
M. C.
Marchetti
,
J. F.
Joanny
,
S.
Ramaswamy
,
T. B.
Liverpool
,
J.
Prost
,
M.
Rao
, and
R. A.
Simha
, “
Hydrodynamics of soft active matter
,”
Rev. Mod. Phys.
85
,
1143
(
2013
).
4.
M. E.
Cates
, “
Diffusive transport without detailed balance in motile bacteria: Does microbiology need statistical physics?
,”
Rep. Prog. Phys.
75
,
042601
(
2012
).
5.
C.
Bechinger
,
R.
Di Leonardo
,
H.
Löwen
,
C.
Reichhardt
,
G.
Volpe
, and
G.
Volpe
, “
Active particles in complex and crowded environments
,”
Rev. Mod. Phys.
88
,
045006
(
2016
).
6.
A.
Zöttl
and
H.
Stark
, “
Emergent behavior in active colloids
,”
J. Phys.: Condens. Matter
28
,
253001
(
2016
).
7.
T.
Vicsek
,
A.
Czirók
,
E.
Ben-Jacob
,
I.
Cohen
, and
O.
Shochet
, “
Novel type of phase transition in a system of self-driven particles
,”
Phys. Rev. Lett.
75
,
1226
1229
(
1995
).
8.
J.
Palacci
,
C.
Cottin-Bizonne
,
C.
Ybert
, and
L.
Bocquet
, “
Sedimentation and effective temperature of active colloidal suspensions
,”
Phys. Rev. Lett.
105
,
088304
(
2010
).
9.
J. R.
Gomez-Solano
,
A.
Blokhuis
, and
C.
Bechinger
, “
Dynamics of self-propelled janus particles in viscoelastic fluids
,”
Phys. Rev. Lett.
116
,
138301
(
2016
).
10.
Y.
Hong
,
N. M.
Blackman
,
N. D.
Kopp
,
A.
Sen
, and
D.
Velegol
, “
Chemotaxis of nonbiological colloidal rods
,”
Phys. Rev. Lett.
99
,
178103
(
2007
).
11.
M. N.
Popescu
,
W. E.
Uspal
,
C.
Bechinger
, and
P.
Fischer
, “
Chemotaxis of active janus nanoparticles
,”
Nano Lett.
18
,
5345
5349
(
2018
).
12.
T.
Bäuerle
,
A.
Fischer
,
T.
Speck
, and
C.
Bechinger
, “
Self-organization of active particles by quorum sensing rules
,”
Nat. Commun.
9
,
3232
(
2018
).
13.
A. F. G.
Barrios
,
R.
Zuo
,
Y.
Hashimoto
,
L.
Yang
,
W. E.
Bentley
, and
T. K.
Wood
, “
Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MQSR, B3022)
,”
J. Bacteriol.
188
,
305
316
(
2006
).
14.
B. L.
Partridge
, “
The structure and function of fish schools
,”
Sci. Am.
246
,
114
123
(
1982
).
15.
I.
Buttinoni
,
J.
Bialké
,
F.
Kümmel
,
H.
Löwen
,
C.
Bechinger
, and
T.
Speck
, “
Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles
,”
Phys. Rev. Lett.
110
,
238301
(
2013
).
16.
E. O.
Budrene
and
H. C.
Berg
, “
Complex patterns formed by motile cells of Escherichia coli
,”
Nature
349
,
630
633
(
1991
).
17.
J.-F.
Joanny
and
S.
Ramaswamy
, “
Filaments band together
,”
Nature
467
,
33
34
(
2010
).
18.
Y.
Yang
,
F.
Qiu
, and
G.
Gompper
, “
Self-organized vortices of circling self-propelled particles and curved active flagella
,”
Phys. Rev. E
89
,
012720
(
2014
).
19.
I. H.
Riedel
,
K.
Kruse
, and
J.
Howard
, “
A self-organized vortex array of hydrodynamically entrained sperm cells
,”
Science
309
,
300
303
(
2005
).
20.
J.
Elgeti
and
G.
Gompper
, “
Self-propelled rods near surfaces
,”
Europhys. Lett.
85
,
38002
(
2009
).
21.
S. K.
Anand
and
S. P.
Singh
, “
Behavior of active filaments near solid-boundary under linear shear flow
,”
Soft Matter
15
,
4008
4018
(
2019
).
22.
A.
Zöttl
and
H.
Stark
, “
Hydrodynamics determines collective motion and phase behavior of active colloids in quasi-two-dimensional confinement
,”
Phys. Rev. Lett.
112
,
118101
(
2014
).
23.
S.
Sahoo
,
S. P.
Singh
, and
S.
Thakur
, “
Enhanced self-propulsion of a sphere-dimer in viscoelastic fluid
,”
Soft Matter
15
,
2170
2177
(
2019
).
24.
Y.-G.
Tao
and
R.
Kapral
, “
Design of chemically propelled nanodimer motors
,”
J. Chem. Phys.
128
,
164518
(
2008
).
25.
R.
van Drongelen
,
A.
Pal
,
C. P.
Goodrich
, and
T.
Idema
, “
Collective dynamics of soft active particles
,”
Phys. Rev. E
91
,
032706
(
2015
).
26.
S.
Thakur
and
R.
Kapral
, “
Collective dynamics of self-propelled sphere-dimer motors
,”
Phys. Rev. E
85
,
026121
(
2012
).
27.
P. H.
Colberg
and
R.
Kapral
, “
Many-body dynamics of chemically propelled nanomotors
,”
J. Chem. Phys.
147
,
064910
(
2017
).
28.
J.-X.
Chen
,
Y.-G.
Chen
, and
Y.-Q.
Ma
, “
Chemotactic dynamics of catalytic dimer nanomotors
,”
Soft Matter
12
,
1876
1883
(
2016
).
29.
G.
Rückner
and
R.
Kapral
, “
Chemically powered nanodimers
,”
Phys. Rev. Lett.
98
,
150603
(
2007
).
30.
J.-X.
Chen
,
Y.-G.
Chen
, and
R.
Kapral
, “
Chemically propelled motors navigate chemical patterns
,”
Adv. Sci.
5
,
1800028
(
2018
).
31.
Y.
Gu
,
S.
Sattayasamitsathit
,
K.
Kaufmann
,
R.
Vazquez-Duhalt
,
W.
Gao
,
C.
Wang
, and
J.
Wang
, “
Self-propelled chemically-powered plant-tissue biomotors
,”
Chem. Commun.
49
,
7307
7309
(
2013
).
32.
D.
Yamamoto
and
A.
Shioi
, “
Self-propelled nano/micromotors with a chemical reaction: Underlying physics and strategies of motion control
,”
KONA Powder Part. J.
32
,
2
22
(
2015
).
33.
W. F.
Paxton
,
K. C.
Kistler
,
C. C.
Olmeda
,
A.
Sen
,
S. K.
St. Angelo
,
Y.
Cao
,
T. E.
Mallouk
,
P. E.
Lammert
, and
V. H.
Crespi
, “
Catalytic nanomotors: Autonomous movement of striped nanorods
,”
J. Am. Chem. Soc.
126
,
13424
13431
(
2004
).
34.
P.
Chuphal
,
P.
Varun
, and
S.
Thakur
, “
Dynamics of diffusiophoretic vesicle under external shear flow
,”
J. Chem. Phys.
151
,
064901
(
2019
).
35.
R.-F.
Cui
,
Q.-H.
Chen
, and
J.-X.
Chen
, “
Separation of nanoparticles via surfing on chemical wavefronts
,”
Nanoscale
12
,
12275
12280
(
2020
).
36.
J. L.
Anderson
and
D. C.
Prieve
, “
Diffusiophoresis caused by gradients of strongly adsorbing solutes
,”
Langmuir
7
,
403
406
(
1991
).
37.
H.-R.
Jiang
,
N.
Yoshinaga
, and
M.
Sano
, “
Active motion of a janus particle by self-thermophoresis in a defocused laser beam
,”
Phys. Rev. Lett.
105
,
268302
(
2010
).
38.
A.
Nourhani
,
V. H.
Crespi
,
P. E.
Lammert
, and
A.
Borhan
, “
Self-electrophoresis of spheroidal electrocatalytic swimmers
,”
Phys. Fluids
27
,
092002
(
2015
).
39.
B.
Robertson
,
H.
Stark
, and
R.
Kapral
, “
Collective orientational dynamics of pinned chemically-propelled nanorotors
,”
Chaos
28
,
045109
(
2018
).
40.
M.
Ibele
,
T. E.
Mallouk
, and
A.
Sen
, “
Schooling behavior of light-powered autonomous micromotors in water
,”
Angew. Chem., Int. Ed. Engl.
48
,
3308
3312
(
2009
).
41.
I.
Theurkauff
,
C.
Cottin-Bizonne
,
J.
Palacci
,
C.
Ybert
, and
L.
Bocquet
, “
Dynamic clustering in active colloidal suspensions with chemical signaling
,”
Phys. Rev. Lett.
108
,
268303
(
2012
).
42.
H.
Nganguia
,
K.
Zheng
,
Y.
Chen
,
O. S.
Pak
, and
L.
Zhu
, “
A note on a swirling squirmer in a shear-thinning fluid
,”
Phys. Fluids
32
,
111906
(
2020
).
43.
R.
Garg
and
A.
Agrawal
, “
Poiseuille number behavior in an adiabatically choked microchannel in the slip regime
,”
Phys. Fluids
32
,
112002
(
2020
).
44.
D.
Yuan
,
Q.
Zhao
,
S.
Yan
,
S.-Y.
Tang
,
G.
Alici
,
J.
Zhang
, and
W.
Li
, “
Recent progress of particle migration in viscoelastic fluids
,”
Lab Chip
18
,
551
567
(
2018
).
45.
G. J.
Elfring
and
G.
Goyal
, “
The effect of gait on swimming in viscoelastic fluids
,”
J. Non-Newtonian Fluid Mech.
234
,
8
14
(
2016
).
46.
T.
Yu
,
P.
Chuphal
,
S.
Thakur
,
S. Y.
Reigh
,
D. P.
Singh
, and
P.
Fischer
, “
Chemical micromotors self-assemble and self-propel by spontaneous symmetry breaking
,”
Chem. Commun.
54
,
11933
11936
(
2018
).
47.
C.-K.
Tung
,
C.
Lin
,
B.
Harvey
,
A. G.
Fiore
,
F.
Ardon
,
M.
Wu
, and
S. S.
Suarez
, “
Fluid viscoelasticity promotes collective swimming of sperm
,”
Sci. Rep.
7
,
3152
(
2017
).
48.
A.
Mozaffari
,
N.
Sharifi-Mood
,
J.
Koplik
, and
C.
Maldarelli
, “
Self-diffusiophoretic colloidal propulsion near a solid boundary
,”
Phys. Fluids
28
,
053107
(
2016
).
49.
S.
Mitra
,
A.
Pasupalak
,
S.
Majumdar
, and
D.
Bandyopadhyay
, “
A computational study on osmotic chemotaxis of a reactive janusbot
,”
Phys. Fluids
32
,
112018
(
2020
).
50.
C.
Datt
,
L.
Zhu
,
G. J.
Elfring
, and
O. S.
Pak
, “
Squirming through shear-thinning fluids
,”
J. Fluid Mech.
784
,
R1
(
2015
).
51.
E.
Lauga
, “
Propulsion in a viscoelastic fluid
,”
Phys. Fluids
19
,
083104
(
2007
).
52.
A.
Patteson
,
A.
Gopinath
,
M.
Goulian
, and
P.
Arratia
, “
Running and tumbling with E. coli in polymeric solutions
,”
Sci. Rep.
5
,
15761
(
2015
).
53.
S. Y.
Reigh
,
P.
Chuphal
,
S.
Thakur
, and
R.
Kapral
, “
Diffusiophoretically induced interactions between chemically active and inert particles
,”
Soft Matter
14
,
6043
6057
(
2018
).
54.
I.
Buttinoni
,
G.
Volpe
,
F.
Kümmel
,
G.
Volpe
, and
C.
Bechinger
, “
Active Brownian motion tunable by light
,”
J. Phys.: Condens. Matter
24
,
284129
(
2012
).
55.
J. R.
Howse
,
R. A.
Jones
,
A. J.
Ryan
,
T.
Gough
,
R.
Vafabakhsh
, and
R.
Golestanian
, “
Self-motile colloidal particles: From directed propulsion to random walk
,”
Phys. Rev. Lett.
99
,
048102
(
2007
).
56.
P.
Chatterjee
,
E. M.
Tang
,
P.
Karande
, and
P. T.
Underhill
, “
Propulsion of catalytic janus spheres in viscosified Newtonian solutions
,”
Phys. Rev. Fluids
3
,
014101
(
2018
).
57.
N.
Narinder
,
J. R.
Gomez-Solano
, and
C.
Bechinger
, “
Active particles in geometrically confined viscoelastic fluids
,”
New J. Phys.
21
,
093058
(
2019
).
58.
B.
Liu
,
T. R.
Powers
, and
K. S.
Breuer
, “
Force-free swimming of a model helical flagellum in viscoelastic fluids
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
19516
19520
(
2011
).
59.
S.
Saad
and
G.
Natale
, “
Diffusiophoresis of active colloids in viscoelastic media
,”
Soft Matter
15
,
9909
9919
(
2019
).
60.
S.
Ji
,
R.
Jiang
,
R. G.
Winkler
, and
G.
Gompper
, “
Mesoscale hydrodynamic modeling of a colloid in shear-thinning viscoelastic fluids under shear flow
,”
J. Chem. Phys.
135
,
134116
(
2011
).
61.
T.
Qiu
,
T.-C.
Lee
,
A. G.
Mark
,
K. I.
Morozov
,
R.
Münster
,
O.
Mierka
,
S.
Turek
,
A. M.
Leshansky
, and
P.
Fischer
, “
Swimming by reciprocal motion at low Reynolds number
,”
Nat. Commun.
5
,
5119
(
2014
).
62.
K.
Qi
,
E.
Westphal
,
G.
Gompper
, and
R. G.
Winkler
, “
Enhanced rotational motion of spherical squirmer in polymer solutions
,”
Phys. Rev. Lett.
124
,
068001
(
2020
).
63.
R.
Kapral
, “
Multiparticle collision dynamics: Simulation of complex systems on mesoscales
,”
Adv. Chem. Phys.
140
,
89
146
(
2008
).
64.
G.
Gompper
,
T.
Ihle
,
D. M.
Kroll
, and
R. G.
Winkler
, “
Multi-particle collision dynamics: A particle-based mesoscale simulation approach to the hydrodynamics of complex fluids
,” in
Advanced Computer Simulation Approaches for Soft Matter Sciences III
, edited by
C.
Holm
and
K.
Kremer
(
Springer
,
Berlin, Heidelberg
,
2009
), pp.
1
87
.
65.
T.
Ihle
and
D.
Kroll
, “
Stochastic rotation dynamics: A Galilean-invariant mesoscopic model for fluid flow
,”
Phys. Rev. E
63
,
020201
(
2001
).
66.
J.
Padding
and
A.
Louis
, “
Hydrodynamic interactions and Brownian forces in colloidal suspensions: Coarse-graining over time and length scales
,”
Phys. Rev. E
74
,
031402
(
2006
).
67.
R. G.
Winkler
and
C.-C.
Huang
, “
Stress tensors of multiparticle collision dynamics fluids
,”
J. Chem. Phys.
130
,
074907
(
2009
).
68.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon Press
,
1989
).
69.
Y.-G.
Tao
,
I. O.
Götze
, and
G.
Gompper
, “
Multiparticle collision dynamics modeling of viscoelastic fluids
,”
J. Chem. Phys.
128
,
144902
(
2008
).
70.
P. H.
Colberg
and
R.
Kapral
, “
Ångström-scale chemically powered motors
,”
Europhys. Lett.
106
,
30004
(
2014
).
71.
R.
Golestanian
, “
Anomalous diffusion of symmetric and asymmetric active colloids
,”
Phys. Rev. Lett.
102
,
188305
(
2009
).
72.
D. C.
Rapaport
,
The Art of Molecular Dynamics Simulation
, 2nd ed. (
Cambridge University Press
,
New York
,
2004
).
73.
B.
Qin
,
A.
Gopinath
,
J.
Yang
,
J. P.
Gollub
, and
P. E.
Arratia
, “
Flagellar kinematics and swimming of algal cells in viscoelastic fluids
,”
Sci. Rep.
5
,
9190
(
2015
).
You do not currently have access to this content.