In this paper, we study the cone and plate rheometer using the Gram–Schmidt factorization of the deformation gradient. This new solution has several advantages over the traditional approach. It is shown that with the use of these kinematics, one can avoid the need for using a convected, curvilinear, coordinate system, which often leads to cumbersome calculations. Here, the use of a convected coordinate system has been replaced with a certain orthonormal coordinate system that arises from the Gram–Schmidt factorization of the deformation gradient. Moreover, by using this solution procedure, it is possible to obtain the normal stress differences and shear stress explicitly. Therefore, this solution procedure opens up a possibility for characterizing material properties by using only a cone and plate rheometer.

1.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics
(
John Wiley and Sons
,
1987
).
2.
R. G.
Larson
,
The Structure and Rheology of Complex Fluids
(
Oxford University Press
,
New York
,
1999
), Vol. 150.
3.
B. D.
Coleman
,
H.
Markovitz
, and
W.
Noll
,
Viscometric Flows of Non-Newtonian Fluids: Theory and Experiment
(
Springer Science & Business Media
,
2012
), Vol. 5.
4.
T.
Schwedoff
, “
Recherches expérimentales sur la cohésion des liquides
,”
J. Phys. Theor. Appl.
8
,
341
(
1889
).
5.
T.
Schwedoff
, “
Recherches expérimentales sur la cohésion des liquides
,”
J. Phys. Theor. Appl.
9
,
34
46
(
1890
).
6.
C.
Truesdell
and
K. R.
Rajagopal
,
An Introduction to the Mechanics of Fluids
(
Springer Science & Business Media
,
2010
).
7.
A. C.
Merrington
, “
Measurement of anomalous viscosity by the capillary tube method
,”
Nature
152
,
214
215
(
1943
).
8.
K.
Weissenberg
, “
A continuum theory of rhelogical phenomena
,”
Nature
159
,
310
(
1947
).
9.
K.
Weissenberg
, “
Abnormal substances and abnormal phenomena of flow
,” in
The International Congress on Rheology at Hague
(
North Holland Publication Co., Amsterdam
,
1948
), p.
1948
.
10.
K.
Weissenberg
, “
Specification of rheological phenomena by means of a rheogoniometer
,” in
Proceedings of the International Congress on Rheology
(
North Holland Publication Co., Amsterdam
,
1948
), pp.
114
118
.
11.
K.
Weissenberg
, “
Rheology of hydrocarbon gels
,”
Proc. R. Soc. London, Ser. A
200
,
183
188
(
1950
).
12.
F.
Garner
,
A.
Nissan
, and
G.
Wood
, “
Thermodynamics and rheological behaviour of elasto-viscous systems under stress
,”
Proc. R. Soc. London, Ser. A
243
,
37
66
(
1950
).
13.
H.
Greensmith
and
R.
Rivlin
, “
The hydrodynamics of non-Newtonian fluids-III. The normal stress effect in high-polymer solutions
,”
Proc. R. Soc. London, Ser. A
245
,
399
428
(
1953
).
14.
A. S.
Lodge
, “
A network theory of flow birefringence and stress in concentrated polymer solutions
,”
Trans. Faraday Soc.
52
,
120
130
(
1956
).
15.
A. S.
Lodge
, “
An attempt to measure the first normal-stress difference n1 in shear flow for a polyisobutylene/decalin solution ‘D2b’ at shear rates up to 106 s−1
,”
J. Rheol.
33
,
821
841
(
1989
).
16.
A. S.
Lodge
, “
Normal stress differences from hole pressure measurements
,” in
Rheological Measurement
(
Springer
,
1993
), pp.
345
382
.
17.
H.
Markovitz
and
R. B.
Williamson
, “
Normal stress effect in polyisobutylene solutions. i. measurements in a cone and plate instrument
,”
Trans. Soc. Rheol.
1
,
25
36
(
1957
).
18.
T.
Kotaka
,
M.
Kurata
, and
M.
Tamura
, “
Normal stress effect in polymer solutions
,”
J. Appl. Phys.
30
,
1705
1712
(
1959
).
19.
N.
Adams
and
A. S.
Lodge
, “
Rheological properties of concentrated polymer solutions II. A cone-and-plate and parallel-plate pressure distribution apparatus for determining normal stress differences in steady shear flow
,”
Proc. R. Soc. London, Ser. A
256
,
149
184
(
1964
).
20.
A.
Kaye
,
A. S.
Lodge
, and
D. G.
Vale
, “
Determination of normal stress differences in steady shear flow
,”
Rheol. Acta
7
,
368
379
(
1968
).
21.
J. M.
Broadbent
,
A.
Kaye
,
A. S.
Lodge
, and
D. G.
Vale
, “
Possible systematic error in the measurement of normal stress differences in polymer solutions in steady shear flow
,”
Nature
217
,
55
56
(
1968
).
22.
S. E.
Mall-Gleissle
,
W.
Gleissle
,
G. H.
McKinley
, and
H.
Buggisch
, “
The normal stress behaviour of suspensions with viscoelastic matrix fluids
,”
Rheol. Acta
41
,
61
76
(
2002
).
23.
W. L.
Duvall
,
M. N.
Wijetunga
,
T. M.
Klein
,
L.
Razzouk
,
J.
Godbold
,
L. B.
Croft
, and
M. J.
Henzlova
, “
The prognosis of a normal stress-only Tc-99m myocardial perfusion imaging study
,”
J. Nucl. Cardiol.
17
,
370
377
(
2010
).
24.
A. J.
Giacomin
and
R. B.
Bird
, “
Normal stress differences in large-amplitude oscillatory shear flow for the corotational ‘ANSR’ model
,”
Rheol. Acta
50
,
741
752
(
2011
).
25.
A. M.
Schmalzer
,
R. B.
Bird
, and
A. J.
Giacomin
, “
Normal stress differences in large-amplitude oscillatory shear flow for dilute rigid dumbbell suspensions
,”
J. Non-Newtonian Fluid Mech.
222
,
56
71
(
2015
).
26.
A. J.
Giacomin
,
P. H.
Gilbert
,
D.
Merger
, and
M.
Wilhelm
, “
Large-amplitude oscillatory shear: Comparing parallel-disk with cone-plate flow
,”
Rheol. Acta
54
,
263
285
(
2015
).
27.
A. J.
Giacomin
and
P. H.
Gilbert
, “
Exact-solution for cone-plate viscometry
,”
J. Appl. Phys.
122
,
175101
(
2017
).
28.
A. J.
Giacomin
and
P. H.
Gilbert
, “
Degradation in cone-plate rheometry
,”
Rev. Sci. Instrum.
89
,
124101
(
2018
).
29.
C.
Saengow
and
A. J.
Giacomin
, “
Normal stress differences from Oldroyd 8-constant framework: Exact analytical solution for large-amplitude oscillatory shear flow
,”
Phys. Fluids
29
,
121601
(
2017
).
30.
H. A.
Barnes
,
J. F.
Hutton
, and
K.
Walters
,
An Introduction to Rheology
(
Elsevier
,
1989
), Vol. 3.
31.
S. J.
Leon
,
Å.
Björck
, and
W.
Gander
, “
Gram-Schmidt orthogonalization: 100 years and more
,”
Numer. Linear Algebra Appl.
20
,
492
532
(
2013
).
32.
A. G.
McLellan
, “
Finite strain coordinates and the stability of solid phases
,”
J. Phys. C: Solid State Phys.
9
,
4083
(
1976
).
33.
A. G.
McLellan
,
The Classical Thermodynamics of Deformable Materials
(
Cambridge University Press
,
1980
).
34.
A. D.
Freed
,
J.-B.
le Graverend
, and
K. R.
Rajagopal
, “
A decomposition of Laplace stretch with applications in inelasticity
,”
Acta Mech.
230
,
3423
3429
(
2019
).
35.
K.
Iwasawa
, “
On some types of topological groups
,”
Ann. Math.
50
,
507
558
(
1949
).
36.
S.
Paul
,
A. D.
Freed
, and
J. D.
Clayton
, “
Coordinate indexing: On the use of Eulerian and Lagrangian Laplace stretches
,”
Appl. Eng. Sci.
5
,
100029
(
2021
).
37.
A. R.
Srinivasa
, “
On the use of the upper triangular (or QR) decomposition for developing constitutive equations for Green-elastic materials
,”
Int. J. Eng. Sci.
60
,
1
12
(
2012
).
38.
A.
Freed
,
V.
Erel
, and
M.
Moreno
, “
Conjugate stress/strain base pairs for planar analysis of biological tissues
,”
J. Mech. Mater. Struct.
12
,
219
247
(
2016
).
39.
A. D.
Freed
and
A. R.
Srinivasa
, “
Logarithmic strain and its material derivative for a QR decomposition of the deformation gradient
,”
Acta Mech.
226
,
2645
2670
(
2015
).
40.
S.
Paul
and
A. D.
Freed
, “
A simple and practical representation of compatibility condition derived using a QR decomposition of the deformation gradient
,”
Acta Mech.
231
,
3289
3304
(
2020
).
41.
A. D.
Freed
and
S.
Zamani
, “
On the use of convected coordinate systems in the mechanics of continuous media derived from a QR factorization of F
,”
Int. J. Eng. Sci.
127
,
145
161
(
2018
).
42.
K. R.
Rajagopal
and
A. R.
Srinivasa
, “
An implicit three-dimensional model for describing the inelastic response of solids undergoing finite deformation
,”
Z. Angew. Math. Phys.
67
,
86
(
2016
).
43.
J. C.
Criscione
, “
Rivlin’s representation formula is ill-conceived for the determination of response functions via biaxial testing
,” in
The Rational Spirit in Modern Continuum Mechanics
(
Springer
,
2004
), pp.
197
215
.
44.
A. D.
Freed
, “
A note on stress/strain conjugate pairs: Explicit and implicit theories of thermoelasticity for anisotropic materials
,”
Int. J. Eng. Sci.
120
,
155
171
(
2017
).
45.
V.
Erel
,
M.
Jiang
,
M. R.
Moreno
, and
A. D.
Freed
, “
Anisotropic conjugate stress/strain base pair approach for laminates undergoing large deformations
,”
Materialia
6
,
100318
(
2019
).
46.
A. D.
Freed
and
S.
Zamani
, “
Elastic Kelvin-Poisson-Poynting solids described through scalar conjugate stress/strain pairs derived from a QR factorization of F
,”
J. Mech. Phys. Solids
129
,
278
293
(
2019
).
47.

The Kirchhoff stress relates to the Cauchy stress tensor via the determinant of its associated deformation gradient.

48.
J. G.
Oldroyd
, “
Some steady flows of the general elastico-viscous liquid
,”
Proc. R. Soc. London, Ser. A
283
,
115
133
(
1965
).
49.
C.
Zener
,
Elasticity and Anelasticity of Metals
(
University of Chicago Press
,
1948
).
50.

Note that in the case of a 1D, standard, linear, solid model, there is only one material parameter associated with the chracteristic time of a fibrous material.

51.
J. G.
Oldroyd
, “
Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids
,”
Proc. R. Soc. London, Ser. A
245
,
278
297
(
1958
).
52.
J. D.
Clayton
and
A. D.
Freed
, “
A constitutive framework for finite viscoelasticity and damage based on the Gram–Schmidt decomposition
,”
Acta Mech.
231
,
3319
3362
(
2020
).
53.
A. S.
Lodge
,
Elastic Liquids: An Introductory Vector Treatment of Finite-Strain Polymer Rheology
(
Academic Press
,
London
,
1964
).
54.
J. G.
Oldroyd
, “
On the formulation of rheological equations of state
,”
Proc. R. Soc. London, Ser. A
200
,
523
541
(
1950
).
You do not currently have access to this content.