We present a critical evaluation of the force balance approach in predicting the departure of rapidly growing bubbles from a boiling surface. To this end, we conduct separate effect bubble growth experiments in a carefully controlled environment. We use high-speed video to quantify experimentally all the external forces acting on a growing bubble through the profile of the liquid–vapor interface. Our experimental data show that the momentum conservation equation is always rigorously satisfied, as it should, if the various forces are precisely quantified. However, based on our analysis and our observations, we come to the conclusion that force balance models cannot be either robust or accurate for the purpose of predicting bubble departure. They are not robust because the rate of change of the bubble momentum, i.e., the key quantity that force balance models aim at evaluating as the sum of the external forces, is orders of magnitude smaller than each of the force terms in the momentum conservation equation throughout the entire bubble life cycle. Thus, the slightest error on one of the external forces leads to very different predictions for bubble departure. The approach is also not accurate because the analytical expressions used to estimate the external forces are riddled with questionable assumptions (e.g., on the bubble growth rate, added mass coefficient, contact line length, and contact angle) and uncertainties that are, once again, orders of magnitude larger than the rate of change of the bubble momentum itself.

1.
M.
Yazdani
,
T.
Radcliff
,
M.
Soteriou
, and
A. A.
Alahyari
, “
A high-fidelity approach towards simulation of pool boiling
,”
Phys. Fluids
28
(
1
),
012111
(
2016
).
2.
L.
Fei
,
J.
Yang
,
Y.
Chen
,
H.
Mo
, and
K. H.
Luo
, “
Mesoscopic simulation of three-dimensional pool boiling based on a phase-change cascaded lattice Boltzmann method
,”
Phys. Fluids
32
(
10
),
103312
(
2020
).
3.
L.
Gilman
and
E.
Baglietto
, “
A self-consistent, physics-based boiling heat transfer modeling framework for use in computational fluid dynamics
,”
Int. J. Multiphase Flow
95
,
35
53
(
2017
).
4.
J. F.
Klausner
,
R.
Mei
,
D. M.
Bernhard
, and
L. Z.
Zeng
, “
Vapor bubble departure in forced convection boiling
,”
Int. J. Heat Mass Transfer
36
(
3
),
651
662
(
1993
).
5.
B.-J.
Yun
,
A.
Splawski
,
S.
Lo
, and
C.-H.
Song
, “
Prediction of a subcooled boiling flow with advanced two-phase flow models
,”
Nucl. Eng. Des.
253
,
351
359
(
2012
).
6.
R.
Sugrue
and
J.
Buongiorno
, “
A modified force-balance model for prediction of bubble departure diameter in subcooled flow boiling
,”
Nucl. Eng. Des.
305
,
717
722
(
2016
).
7.
M.
Colombo
and
M.
Fairweather
, “
Prediction of bubble departure in forced convection boiling: A mechanistic model
,”
Int. J. Heat Mass Transfer
85
,
135
146
(
2015
).
8.
T.
Mazzocco
,
W.
Ambrosini
,
R.
Kommajosyula
, and
E.
Baglietto
, “
A reassessed model for mechanistic prediction of bubble departure and lift off diameters
,”
Int. J. Heat Mass Transfer
117
,
119
124
(
2018
).
9.
G. H.
Yeoh
and
J. Y.
Tu
, “
A unified model considering force balances for departing vapour bubbles and population balance in subcooled boiling flow
,”
Nucl. Eng. Des.
235
(
10-12
),
1251
1265
(
2005
).
10.
G.
Hong
,
X.
Yan
,
Y.-h.
Yang
,
T.-z.
Xie
, and
J.-j.
Xu
, “
Bubble departure size in forced convective subcooled boiling flow under static and heaving conditions
,”
Nucl. Eng. Des.
247
,
202
211
(
2012
).
11.
S.
Raj
,
M.
Pathak
, and
M. K.
Khan
, “
An analytical model for predicting growth rate and departure diameter of a bubble in subcooled flow boiling
,”
Int. J. Heat Mass Transfer
109
,
470
481
(
2017
).
12.
H.
Setoodeh
,
W.
Ding
,
D.
Lucas
, and
U.
Hampel
, “
Prediction of bubble departure in forced convection boiling with a mechanistic model that considers dynamic contact angle and base expansion
,”
Energies
12
(
10
),
1950
(
2019
).
13.
M. A.
Abdous
,
S. G.
Holagh
,
M.
Shamsaiee
, and
H.
Saffari
, “
The prediction of bubble departure and lift-off radii in vertical U-shaped channel under subcooled flow boiling based on forces balance analysis
,”
Int. J. Therm. Sci.
142
,
316
331
(
2019
).
14.
Y. J.
Cho
,
S. B.
Yum
,
J. H.
Lee
, and
G. C.
Park
, “
Development of bubble departure and lift-off diameter models in low heat flux and low flow velocity conditions
,”
Int. J. Heat Mass Transfer
54
(
15-16
),
3234
3244
(
2011
).
15.
J.
Zhou
,
Y.
Zhang
, and
J.
Wei
, “
A modified bubble dynamics model for predicting bubble departure diameter on micro-pin-finned surfaces under microgravity
,”
Appl. Therm. Eng.
132
,
450
462
(
2018
).
16.
X.
Wang
,
Z.
Wu
,
J.
Wei
, and
B.
Sundén
, “
Correlations for prediction of the bubble departure radius on smooth flat surface during nucleate pool boiling
,”
Int. J. Heat Mass Transfer
132
,
699
714
(
2019
).
17.
M. S.
Plesset
and
S. A.
Zwick
, “
The growth of vapor bubbles in superheated liquids
,”
J. Appl. Phys.
25
(
4
),
493
500
(
1954
).
18.
H. K.
Forster
and
N.
Zuber
, “
Growth of a vapor bubble in a superheated liquid
,”
J. Appl. Phys.
25
(
4
),
474
478
(
1954
).
19.
L. Z.
Zeng
,
J. F.
Klausner
,
D. M.
Bernhard
, and
R.
Mei
, “
A unified model for the prediction of bubble detachment diameters in boiling systems—II. Flow boiling
,”
Int. J. Heat Mass Transfer
36
(
9
),
2271
2279
(
1993
).
20.
L. Z.
Zeng
,
J. F.
Klausner
, and
R.
Mei
, “
A unified model for the prediction of bubble detachment diameters in boiling systems—I. Pool boiling
,”
Int. J. Heat Mass Transfer
36
(
9
),
2261
2270
(
1993
).
21.
C. W. M.
Van der Geld
, “
Bubble detachment criteria: Some criticism of ‘Das Abreissen von Dampfblasen an festen Heizflächen’
,”
Int. J. Heat Mass Transfer
39
(
3
),
653
657
(
1996
).
22.
J.
Mitrović
, “
Das Abreißen von Dampfblasen an festen Heizflächen
,”
Int. J. Heat Mass Transfer
26
(
7
),
955
963
(
1983
).
23.
G. E.
Thorncroft
and
J. F.
Klausner
, “
Bubble forces and detachment models
,”
Multiphase Sci. Technol.
13
(
3-4
),
3
5
(
2001
).
24.
G.
Duhar
and
C.
Colin
, “
Dynamics of bubble growth and detachment in a viscous shear flow
,”
Phys. Fluids
18
(
7
),
077101
(
2006
).
25.
M.
Lebon
,
J.
Sebilleau
, and
C.
Colin
, “
Dynamics of growth and detachment of an isolated bubble on an inclined surface
,”
Phys. Rev. Fluids
3
(
7
),
073602
(
2018
).
26.
P.
Di Marco
,
N.
Giannini
, and
G.
Saccone
, “
Experimental measurement of the electric forces acting on a growing gas bubble in quasi-static conditions
,”
Interfacial Phenom. Heat Transfer
3
(
4
),
319
(
2015
).
27.
A.
Kumar
,
M. R.
Gunjan
, and
R.
Raj
, “
On the validity of force balance models for predicting gravity-induced detachment of pendant drops and bubbles
,”
Phys. Fluids
32
(
10
),
101703
(
2020
).

Supplementary Material

You do not currently have access to this content.