The dissipation rate of a scalar variance is related to the mean heat release rate in turbulent combustion. Mixture fraction is the scalar of interest for non-premixed combustion, and a reaction progress variable is relevant for premixed combustion. A great deal of work is conducted in past studies to understand the spectra of passive scalar transport in turbulent flows. A very brief summary of these studies to bring out the salient characteristics of the passive scalar spectrum is given first. Then, the classical analysis of the reactive scalar spectrum is revisited in the lights of recent understanding gained through analyzing the scalar spectrum deduced from direct numerical simulation data of both non-premixed and premixed combustion. The analysis shows that the reactive scalar spectral density in premixed combustion has a dependence on Karlovitz and Damköhler numbers, which comes through the mean scalar dissipation rate appearing in the spectral expression. In premixed combustion, the relevant scale for the scalar dissipation rate is shown to be of the order of the chemical length scale, and the dissipation rate is not influenced by the scales in the inertial-convective range unlike for the passive scalar dissipation rate. The scalar fluctuations produced near the chemical scales cascade exponentially to larger scales. These observations imply that the passive scalar models cannot be extended to premixed combustion.

1.
R. W.
Bilger
, “
The structure of diffusion flames
,”
Combust. Sci. Technol.
13
,
155
170
(
1976
).
2.
R. W.
Bilger
, “
Some aspects of scalar dissipation
,”
Flow Turbul. Combust.
72
,
93
114
(
2004
).
3.
K. N. C.
Bray
, “
The interaction between turbulence and combustion
,”
Proc. Combust. Inst.
17
,
223
233
(
1979
).
4.
K. N. C.
Bray
, “
Turbulent flows with premixed reactants
,” in
Turbulent Reacting Flows
, edited by
P. A.
Libby
and
F. A.
Williams
(
Springer-Verlag
,
1980
), p.
115
.
5.
L.
Vervisch
,
E.
Bidaux
,
K. N. C.
Bray
, and
W.
Kollmann
, “
Surface density function in premixed turbulent combustion modeling, similarities between probability density function and flame surface approaches
,”
Phys. Fluids
7
,
2496
2503
(
1995
).
6.
D.
Veynante
and
L.
Vervisch
, “
Turbulent combustion modeling
,”
Prog. Energy Combust. Sci.
28
,
193
266
(
2002
).
7.
N.
Swaminathan
and
K. N. C.
Bray
, “
Effect of dilatation on scalar dissipation in turbulent premixed flames
,”
Combust. Flame
143
,
549
565
(
2005
).
8.
N.
Swaminathan
and
R. W.
Grout
, “
Interaction of turbulence and scalar fields in premixed flames
,”
Phys. Fluids
18
,
045102
(
2006
).
9.
S. H.
Kim
and
H.
Pitsch
, “
Scalar gradient and small-scale structure in turbulent premixed combustion
,”
Phys. Fluids
19
,
115104
(
2009
).
10.
N.
Chakraborty
and
N.
Swaminathan
, “
Influence of the Damköhler number on turbulence-scalar interaction in premixed flames. I. Physical insight
,”
Phys. Fluids
19
,
045103
(
2007
).
11.
G.
Hartung
,
J.
Hult
,
C. F.
Kaminski
,
J. W.
Rogerson
, and
N.
Swaminathan
, “
Effect of heat release on turbulence and scalar-turbulence interaction in premixed combustion
,”
Phys. Fluids
20
,
035110
(
2008
).
12.
O. N.
Boratav
,
S. E.
Elghobashi
, and
R.
Zhong
, “
On the alignment of strain, vorticity and scalar gradient in turbulent, buoyant, nonpremixed flames
,”
Phys. Fluids
10
,
2260
(
1998
).
13.
G.
Batchelor
, “
The effect of homogeneous turbulence on material lines and surfaces
,”
Proc. R. Soc. London, Ser. A
231
,
349
(
1952
).
14.
K. K.
Nomura
and
S. E.
Elghobashi
, “
Mixing characteristics of an inhomogeneous scalar in isotropic and homogeneous sheared turbulence
,”
Phys. Fluids A
4
,
606
(
1992
).
15.
A.
Garcia
and
M.
Gonzalez
, “
Analysis of passive scalar gradient alignment in a simplified three-dimensional case
,”
Phys. Fluids
18
,
058101
(
2006
).
16.
N.
Chakraborty
,
J. W.
Rogerson
, and
N.
Swaminathan
, “
A priori assessment of closures for scalar dissipation rate transport in turbulent premixed flames using direct numerical simulation
,”
Phys. Fluids
20
,
045106
(
2008
).
17.
H.
Kolla
,
J. W.
Rogerson
,
N.
Chakraborty
, and
N.
Swaminathan
, “
Scalar dissipation rate modeling and its validation
,”
Combust. Sci. Technol.
181
,
518
535
(
2009
).
18.
S.
Corrsin
, “
The reactant concentration spectrum in turbulent mixing with a first-order reaction
,”
J. Fluid Mech.
11
,
407
(
1961
).
19.
K. R.
Sreenivasan
, “
Turbulent mixing: A perspective
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
18175
(
2019
).
20.
C. D.
Pierce
and
P.
Moin
, “
A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar
,”
Phys. Fluids
10
,
3041
(
1998
).
21.
T.
Mantel
and
R. W.
Bilger
, “
Some conditional statistics in a turbulent premixed flame derived from direct numerical simulations
,”
Combust. Sci. Technol.
110-111
,
393
417
(
1995
).
22.
T.
Ma
,
Y.
Gao
,
A. M.
Kempf
, and
N.
Chakraborty
, “
Validation and implementation of algebraic LES modelling of scalar dissipation rate for reaction rate closure in turbulent premixed combustion
,”
Combust. Flame
161
,
3134
3153
(
2014
).
23.
D.
Butz
,
Y.
Gao
,
A. M.
Kempf
, and
N.
Chakraborty
, “
Large eddy simulations of a turbulent premixed swirl flame using an algebraic scalar dissipation rate closure
,”
Combust. Flame
162
,
3180
3196
(
2015
).
24.
I.
Langella
,
N.
Swaminathan
, and
R. W.
Pitz
, “
Application of unstrained flamelet SGS closure for multi-regime premixed combustion
,”
Combust. Flame
173
,
161
178
(
2016
).
25.
C.
Dopazo
,
N.
Swaminathan
,
L.
Cifuentes
, and
X.-S.
Bai
, “
Premixed combustion modeling
,” in
Advanced Turbulent Combustion Physics and Applications
, edited by
N.
Swaminathan
,
X.-S.
Bai
,
N. E. L.
Haugen
,
C.
Fureby
, and
G.
Brethouwer
(
Cambridge University Press
,
2021
), Chap. 3.
26.
A. Y.
Klimenko
and
R. W.
Bilger
, “
Conditional moment closure for turbulent combustion
,”
Prog. Energy Combust. Sci.
25
,
595
687
(
1999
).
27.
E. E.
O’Brien
, “
The probability density function (PDF) approach to turbulent reacting flows
,” in
Turbulent Reacting Flows
, edited by
P. A.
Libby
and
F. A.
Williams
(
Springer-Verlag
,
1980
), Chap. 5, pp.
185
218
.
28.
S. B.
Pope
, “
PDF methods for turbulent reactive flows
,”
Prog. Energy Combust. Sci.
11
,
119
192
(
1985
).
29.
F.
Gao
and
E. E.
O’Brien
, “
A large‐eddy simulation scheme for turbulent reacting flows
,”
Phys. Fluids A
5
,
1282
1284
(
1993
).
30.
C.
Dopazo
, “
Recent development in pdf methods
,” in
Turbulent Reacting Flows
, edited by
P. A.
Libby
and
F. A.
Williams
(
Academic Press
,
1994
), Chap. 7, pp.
375
474
.
31.
D. C.
Haworth
, “
Progress in probability density function methods for turbulent reacting flows
,”
Prog. Energy Combust. Sci.
36
,
168
259
(
2010
).
32.
S. B.
Pope
, “
Computations of turbulent combustion: Progress and challenges
,”
Proc. Combust. Inst.
23
,
591
612
(
1991
).
33.
H.
Kolla
,
E. R.
Hawkes
,
A. R.
Kerstein
,
N.
Swaminathan
, and
J. H.
Chen
, “
On velocity and reactive scalar spectra in turbulent premixed flames
,”
J. Fluid Mech.
754
,
456
(
2014
).
34.
Y.-H.
Pao
, “
Statistical behavior of a turbulent multicomponent mixture with first-order reactions
,”
AIAA J.
2
,
1550
(
1964
).
35.
A. N.
Kolmogorov
, “
The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers
,”
Dokl. Akad. Nauk SSSR
30
,
9
(
1941
).
36.
S.
Corrsin
, “
On the spectrum of isotropic temperature fluctuations in isotropic turbulence
,”
J. Appl. Phys.
22
,
469
(
1951
).
37.
A. M.
Obukhov
, “
Structure of temperature field in turbulence flows
,”
Izv. Geogr. Geophys.
13
,
58
(
1949
).
38.
G. K.
Batchelor
, “
Small-scale variation of convected quantities like temperature in turbulent fluid Part 1. General discussion and the case of small conductivity
,”
J. Fluid Mech.
5
,
113
(
1959
).
39.
Y.-H.
Pao
, “
Diffusive quantities in turbulent fluid
,” Ph.D. thesis,
The Johns Hopkins University
,
Baltimore, MD,
1962
.
40.
T.
Gotoh
and
P. K.
Yeung
, “
Passive scalar transport in turbulence: A computational perspective
,” in
Ten Chapters in Turbulence
, edited by
P. A.
Davidson
,
Y.
Kaneda
, and
K. R.
Sreenivasan
(
Cambridge University Press
,
2012
), Chap. 3, pp.
87
131
.
41.
S.
Yigit
,
J.
Hasslberger
,
N.
Chakraborty
, and
M.
Klein
, “
Effects of Rayleigh-Bénard convection on spectra of viscoplastic fluids
,”
Int. J. Heat Mass Transfer
147
,
118947
(
2020
).
42.
R.
Knaus
and
C.
Pantano
, “
On the effect of heat release in turbulence spectra of non-premixed reacting shear layers
,”
J. Fluid Mech.
626
,
67
(
2009
).
43.
H.
Kolla
,
X.-Y.
Zhao
,
J. H.
Chen
, and
N.
Swaminathan
, “
Velocity and reactive scalar dissipation spectra in turbulent premixed flames
,”
Combust. Sci. Technol.
188
,
1424
(
2016
).
44.
R. W.
Bilger
, “
The structure of turbulent nonpremixed flames
,”
Proc. Combust. Inst.
22
,
475
488
(
1988
).
45.
E. E.
O’Brien
, “
On the statistical behavior of a dilute reactant in isotropic turbulence
,” Ph.D. thesis,
The Johns Hopkins University
,
Baltimore, MD
,
1960
.
46.
N.
Chakraborty
,
M.
Katragadda
, and
R. S.
Cant
, “
Statistics and modelling of turbulent kinetic energy transport in different regimes of premixed combustion
,”
Flow Turbul. Combust.
87
,
205
235
(
2011
).
47.
P.
Paes
and
Y.
Xuan
, “
Numerical investigation of turbulent kinetic energy dynamics in chemically-reacting homogeneous turbulence
,”
Flow Turbul. Combust.
101
,
775
(
2018
).
48.
N.
Peters
,
Turbulent Combustion
(
Cambridge University Press
,
2000
).
49.
N.
Chakraborty
and
N.
Swaminathan
, “
Effects of Lewis number on scalar variance transport in premixed flames
,”
Flow Turbul. Combust.
87
,
261
(
2011
).
50.
N.
Chakraborty
and
N.
Swaminathan
, “
Reynolds number effects on scalar dissipation rate transport and its modeling in turbulent premixed combustion
,”
Combust. Sci. Technol.
185
,
676
(
2013
).
51.
H.
Kolla
,
J. W.
Rogerson
, and
N.
Swaminathan
, “
Validation of a turbulent flame speed model across combustion regimes
,”
Combust. Sci. Technol.
182
,
284
308
(
2011
).
52.
N.
Chakraborty
and
N.
Swaminathan
, “
Effects of Lewis number on scalar dissipation transport and its modelling implications for turbulent premixed combustion
,”
Combust. Sci. Technol.
182
,
1201
(
2010
).
53.
Y.
Gao
and
N.
Chakraborty
, “
Modeling of Lewis number dependence of scalar dissipation rate transport for large eddy simulations of turbulent premixed combustion
,”
Numer. Heat Transfer A
69
,
1201
(
2016
).
54.
N.
Chakraborty
,
M.
Champion
,
A.
Mura
, and
N.
Swaminathan
, “
Scalar dissipation rate approach
,” in
Turbulent Premixed Flames
, edited by
N.
Swaminathan
and
K. N. C.
Bray
(
Cambridge University Press
,
2011
), Chap. 2.3, pp.
74
102
.
55.
Y.
Gao
,
N.
Chakraborty
, and
N.
Swaminathan
, “
Scalar dissipation rate transport and its modeling for large eddy simulations of turbulent premixed combustion
,”
Combust. Sci. Technol.
187
,
362
(
2015
).
56.
Y.
Minamoto
,
N.
Fukushima
,
M.
Tanahashi
,
T.
Miyauchi
,
T. D.
Dunstan
, and
N.
Swaminathan
, “
Effect of flow-geometry on turbulence-scalar interaction in premixed flames
,”
Phys. Fluids
23
,
125107
(
2011
).
57.
T. D.
Dunstan
,
Y.
Minamoto
,
N.
Chakraborty
, and
N.
Swaminathan
, “
Scalar dissipation rate modelling for large eddy simulation of turbulent premixed flames
,”
Proc. Combust. Inst.
34
,
1193
(
2013
).
58.
Y.
Gao
,
N.
Chakraborty
,
T. D.
Dunstan
, and
N.
Swaminathan
, “
Assessment of Reynolds averaged Navier–Stokes modeling of scalar dissipation rate transport in turbulent oblique premixed flames
,”
Combust. Sci. Technol.
187
,
1584
(
2015
).
59.
Y.
Gao
,
Y.
Minamoto
,
M.
Tanahashi
, and
N.
Chakraborty
, “
A priori assessment of scalar dissipation rate closure for large eddy simulations of turbulent premixed combustion using a detailed chemistry direct numerical simulation database
,”
Combust. Sci. Technol.
188
,
1398
(
2016
).
60.
N.
Chakraborty
,
M.
Klein
, and
N.
Swaminathan
, “
Effects of Lewis number on the reactive scalar gradient alignment with local strain rate in turbulent premixed flames
,”
Proc. Combust. Inst.
32
,
1409
(
2009
).
61.
N.
Chakraborty
,
J. W.
Rogerson
, and
N.
Swaminathan
, “
The scalar gradient alignment statistics of flame kernels and its modelling implications for turbulent premixed combustion
,”
Flow Turbul. Combust
85
,
25
55
(
2010
).
62.
N.
Chakraborty
,
H.
Kolla
,
R.
Sankaran
,
E. R.
Hawkes
,
J. H.
Chen
, and
N.
Swaminathan
, “
Determination of three-dimensional quantities related to scalar dissipation rate and its transport from two-dimensional measurements: Direct numerical simulation based validation
,”
Proc. Combust. Inst.
34
,
1151
(
2013
).
63.
Y.
Minamoto
,
K.
Aoki
,
M.
Tanahashi
, and
N.
Swaminathan
, “
DNS of swirling hydrogen-air premixed flames
,”
Int. J. Hydrogen Energy
40
,
13604
(
2015
).
64.
G.
Ghiasi
,
N. A. K.
Doan
,
N.
Swaminathan
,
B.
Yenerdag
,
Y.
Minamoto
, and
M.
Tanahashi
, “
Assessment of SGS closure for isochoric combustion of hydrogen-air mixture
,”
Int. J. Hydrogen Energy
43
,
8105
(
2018
).
You do not currently have access to this content.