In this paper, we extend Grossmann and Lohse’s (GL) model [S. Grossmann and D. Lohse, “Thermal convection for large Prandtl numbers,” Phys. Rev. Lett. 86, 3316 (2001)] for the predictions of Reynolds number (Re) and Nusselt number (Nu) in turbulent Rayleigh–Bénard convection. Toward this objective, we use functional forms for the prefactors of the dissipation rates in the bulk and boundary layers. The functional forms arise due to inhibition of nonlinear interactions in the presence of walls and buoyancy compared to free turbulence, along with a deviation of the viscous boundary layer profile from Prandtl–Blasius theory. We perform 60 numerical runs on a three-dimensional unit box for a range of Rayleigh numbers (Ra) and Prandtl numbers (Pr) and determine the aforementioned functional forms using machine learning. The revised predictions are in better agreement with the past numerical and experimental results than those of the GL model, especially for extreme Prandtl numbers.

1.
G.
Ahlers
,
S.
Grossmann
, and
D.
Lohse
, “
Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection
,”
Rev. Mod. Phys.
81
,
503
537
(
2009
).
2.
F.
Chillà
and
J.
Schumacher
, “
New perspectives in turbulent Rayleigh-Bénard convection
,”
Eur. Phys. J. E
35
,
58
(
2012
).
3.
E. D.
Siggia
, “
High Rayleigh number convection
,”
Annu. Rev. Fluid Mech.
26
,
137
168
(
1994
).
4.
K.-Q.
Xia
, “
Current trends and future directions in turbulent thermal convection
,”
Theor. Appl. Mech. Lett.
3
,
052001
(
2013
).
5.
M. K.
Verma
,
Physics of Buoyant Flows: From Instabilities to Turbulence
(
World Scientific
,
Singapore
,
2018
).
6.
W. V. R.
Malkus
, “
The heat transport and spectrum of thermal turbulence
,”
Proc. R. Soc. London, Ser. A
225
,
196
212
(
1954
).
7.
R. H.
Kraichnan
, “
Turbulent thermal convection at arbitrary Prandtl number
,”
Phys. Fluids
5
,
1374
1389
(
1962
).
8.
B.
Castaing
,
G.
Gunaratne
,
F.
Heslot
,
L.
Kadanoff
,
A.
Libchaber
,
S.
Thomae
,
X.-Z.
Wu
,
S.
Zaleski
, and
G.
Zanetti
, “
Scaling of hard thermal turbulence in Rayleigh-Bénard convection
,”
J. Fluid Mech.
204
,
1
30
(
1989
).
9.
B. I.
Shraiman
and
E. D.
Siggia
, “
Heat transport in high-Rayleigh-number convection
,”
Phys. Rev. A
42
,
3650
3653
(
1990
).
10.
S.
Cioni
,
S.
Ciliberto
, and
J.
Sommeria
, “
Strongly turbulent Rayleigh-Bénard convection in mercury: Comparison with results at moderate Prandtl number
,”
J. Fluid Mech.
335
,
111
140
(
1997
).
11.
J. D.
Scheel
and
J.
Schumacher
, “
Predicting transition ranges to fully turbulent viscous boundary layers in low Prandtl number convection flows
,”
Phys. Rev. Fluids
2
,
123501
(
2017
).
12.
H. T.
Rossby
, “
A study of Bénard convection with and without rotation
,”
J. Fluid Mech.
36
,
309
335
(
1969
).
13.
T.
Takeshita
,
T.
Segawa
,
J. A.
Glazier
, and
M.
Sano
, “
Thermal turbulence in mercury
,”
Phys. Rev. Lett.
76
,
1465
1468
(
1996
).
14.
S.
Ashkenazi
and
V.
Steinberg
, “
High Rayleigh number turbulent convection in a gas near the gas-liquid critical point
,”
Phys. Rev. Lett.
83
,
3641
3645
(
1999
).
15.
X.
Chavanne
,
F.
Chillà
,
B.
Castaing
,
B.
Hébral
,
B.
Chabaud
, and
J.
Chaussy
, “
Observation of the ultimate regime in Rayleigh-Bénard convection
,”
Phys. Rev. Lett.
79
,
3648
3651
(
1997
).
16.
S.
Horn
,
O.
Shishkina
, and
C.
Wagner
, “
On non-Oberbeck-Boussinesq effects in three-dimensional Rayleigh-Bénard convection in glycerol
,”
J. Fluid Mech.
724
,
175
202
(
2013
).
17.
M. S.
Emran
and
J.
Schumacher
, “
Fine-scale statistics of temperature and its derivatives in convective turbulence
,”
J. Fluid Mech.
611
,
13
34
(
2008
).
18.
S.
Wagner
and
O.
Shishkina
, “
Aspect-ratio dependency of Rayleigh-Bénard convection in box-shaped containers
,”
Phys. Fluids
25
,
085110
(
2013
).
19.
M.
Kaczorowski
and
K.-Q.
Xia
, “
Turbulent flow in the bulk of Rayleigh-Bénard convection: Small-scale properties in a cubic cell
,”
J. Fluid Mech.
722
,
596
617
(
2013
).
20.
J. J.
Niemela
and
K. R.
Sreenivasan
, “
Confined turbulent convection
,”
J. Fluid Mech.
481
,
355
384
(
2003
).
21.
D.
Funfschilling
,
E.
Brown
,
A.
Nikolaenko
, and
G.
Ahlers
, “
Heat transport by turbulent Rayleigh-Bénard convection in cylindrical samples with aspect ratio one and larger
,”
J. Fluid Mech.
536
,
145
154
(
2005
).
22.
A.
Pandey
and
M. K.
Verma
, “
Scaling of large-scale quantities in Rayleigh-Bénard convection
,”
Phys. Fluids
28
,
095105
(
2016
).
23.
A.
Pandey
,
A.
Kumar
,
A. G.
Chatterjee
, and
M. K.
Verma
, “
Dynamics of large-scale quantities in Rayleigh-Bénard convection
,”
Phys. Rev. E
94
,
053106
(
2016
).
24.
A.
Pandey
,
M. K.
Verma
, and
P. K.
Mishra
, “
Scaling of heat flux and energy spectrum for very large Prandtl number convection
,”
Phys. Rev. E
89
,
023006
(
2014
).
25.
R. J. A. M.
Stevens
,
R.
Verzicco
, and
D.
Lohse
, “
Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection
,”
J. Fluid Mech.
643
,
495
507
(
2010
).
26.
A.
Xu
,
L.
She
, and
H.-D.
Xi
, “
Statistics of temperature and thermal energy dissipation rate in low-Prandtl number turbulent thermal convection
,”
Phys. Fluids
31
,
125101
(
2019
).
27.
D.-L.
Dong
,
B.-F.
Wang
,
Y.-H.
Dong
,
Y.-X.
Huang
,
N.
Jiang
,
Y.-L.
Liu
,
Z.-M.
Lu
,
X.
Qiu
,
Z.-Q.
Tang
, and
Q.
Zhou
, “
Influence of spatial arrangements of roughness elements on turbulent Rayleigh-Bénard convection
,”
Phys. Fluids
32
,
045114
(
2020
).
28.
U.
Madanan
and
R. J.
Goldstein
, “
High-Rayleigh-number thermal convection of compressed gases in inclined rectangular enclosures
,”
Phys. Fluids
32
,
017103
(
2020
).
29.
M.
Vial
and
R. H.
Hernández
, “
Feedback control and heat transfer measurements in a Rayleigh-Bénard convection cell
,”
Phys. Fluids
29
,
074103
(
2017
).
30.
K.-Q.
Xia
,
S.
Lam
, and
S.-Q.
Zhou
, “
Heat-flux measurement in high-Prandtl-number turbulent Rayleigh-Bénard convection
,”
Phys. Rev. Lett.
88
,
064501
(
2002
).
31.
R.
Verzicco
and
R.
Camussi
, “
Prandtl number effects in convective turbulence
,”
J. Fluid Mech.
383
,
55
73
(
1999
).
32.
J. J.
Niemela
,
L.
Skrbek
,
K. R.
Sreenivasan
, and
R. J.
Donnelly
, “
The wind in confined thermal convection
,”
J. Fluid Mech.
449
,
169
178
(
2001
).
33.
S.
Lam
,
X.-D.
Shang
,
S.-Q.
Zhou
, and
K.-Q.
Xia
, “
Prandtl number dependence of the viscous boundary layer and the Reynolds numbers in Rayleigh-Bénard convection
,”
Phys. Rev. E
65
,
066306
(
2002
).
34.
M. K.
Verma
,
P. K.
Mishra
,
A.
Pandey
, and
S.
Paul
, “
Scalings of field correlations and heat transport in turbulent convection
,”
Phys. Rev. E
85
,
016310
(
2012
).
35.
G.
Silano
,
K. R.
Sreenivasan
, and
R.
Verzicco
, “
Numerical simulations of Rayleigh-Bénard convection for Prandtl numbers between 10−1 and 104 and Rayleigh numbers between 105 and 109
,”
J. Fluid Mech.
662
,
409
446
(
2010
).
36.
E.
Brown
,
D.
Funfschilling
, and
G.
Ahlers
, “
Anomalous Reynolds-number scaling in turbulent Rayleigh-Bénard convection
,”
J. Stat. Mech.: Theory Exp.
2007
,
P10005
.
37.
D.
Lohse
and
F.
Toschi
, “
Ultimate state of thermal convection
,”
Phys. Rev. Lett.
90
,
034502
(
2003
).
38.
X.
He
,
D.
Funfschilling
,
E.
Bodenschatz
, and
G.
Ahlers
, “
Heat transport by turbulent Rayleigh–Bénard convection for Pr ≈ 0.8 and 4 × 1011 ≤ Ra ≤ 2 × 1014: Ultimate-state transition for aspect ratio T = 1.00
,”
New J. Phys.
14
,
063030
(
2012
).
39.
S. S.
Pawar
and
J. H.
Arakeri
, “
Kinetic energy and scalar spectra in high Rayleigh number axially homogeneous buoyancy driven turbulence
,”
Phys. Fluids
28
,
065103
(
2016
).
40.
S. S.
Pawar
and
J. H.
Arakeri
, “
Two regimes of flux scaling in axially homogeneous turbulent convection in vertical tube
,”
Phys. Rev. Fluids
1
,
042401(R)
(
2016
).
41.
L. E.
Schmidt
,
E.
Calzavarini
,
D.
Lohse
, and
F.
Toschi
, “
Axially homogeneous Rayleigh-Bénard convection in a cylindrical cell
,”
J. Fluid Mech.
691
,
52
68
(
2012
).
42.
E.
Calzavarini
,
D.
Lohse
,
F.
Toschi
, and
R.
Tripiccione
, “
Rayleigh and Prandtl number scaling in the bulk of Rayleigh–Bénard turbulence
,”
Phys. Fluids
17
,
055107
(
2005
).
43.
E.
Calzavarini
,
C. R.
Doering
,
J. D.
Gibbon
,
D.
Lohse
,
A.
Tanabe
, and
F.
Toschi
, “
Exponentially growing solutions in homogeneous Rayleigh-Bénard convection
,”
Phys. Rev. E
73
,
035301
(
2006
).
44.
C. R.
Doering
, “
Thermal forcing and ‘classical’ and ‘ultimate’ regimes of Rayleigh–Bénard convection
,”
J. Fluid Mech.
868
,
1
4
(
2019
).
45.
P.-E.
Roche
,
B.
Castaing
,
B.
Chabaud
, and
B.
Hebral
, “
Observation of the 1/2 power law in Rayleigh–Bénard convection
,”
Phys. Rev. E
63
,
045303(R)
(
2001
).
46.
G.
Ahlers
,
D.
Funfschilling
, and
E.
Bodenschatz
, “
Transitions in heat transport by turbulent convection at Rayleigh numbers up to 1015
,”
New J. Phys.
11
,
123001
(
2009
).
47.
J. J.
Niemela
,
L.
Skrbek
,
K. R.
Sreenivasan
, and
R. J.
Donnelly
, “
Turbulent convection at very high Rayleigh numbers
,”
Nature
404
,
837
840
(
2000
).
48.
K. P.
Iyer
,
J. D.
Scheel
,
J.
Schumacher
, and
K. R.
Sreenivasan
, “
Classical 1/3 scaling of convection holds up to Ra = 1015
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
7594
7598
(
2020
).
49.
S.
Grossmann
and
D.
Lohse
, “
Scaling in thermal convection: A unifying theory
,”
J. Fluid Mech.
407
,
27
56
(
2000
).
50.
S.
Grossmann
and
D.
Lohse
, “
Thermal convection for large Prandtl numbers
,”
Phys. Rev. Lett.
86
,
3316
3319
(
2001
).
51.
S.
Grossmann
and
D.
Lohse
, “
Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection
,”
Phys. Rev. E
66
,
016305
(
2002
).
52.
S.
Grossmann
and
D.
Lohse
, “
On geometry effects in Rayleigh-Bénard convection
,”
J. Fluid Mech.
486
,
105
114
(
2003
).
53.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
, 2nd ed., Course of Theoretical Physics (
Elsevier
,
Oxford
,
1987
).
54.
R. J. A. M.
Stevens
,
E. P.
van der Poel
,
S.
Grossmann
, and
D.
Lohse
, “
The unifying theory of scaling in thermal convection: The updated prefactors
,”
J. Fluid Mech.
730
,
295
308
(
2013
).
55.
M.
Lesieur
,
Turbulence in Fluids
(
Springer-Verlag
,
Dordrecht
,
2008
).
56.
M. K.
Verma
,
Energy Trasnfers in Fluid Flows: Multiscale and Spectral Perspectives
(
Cambridge University Press
,
Cambridge
,
2019
).
57.
R.
Verzicco
and
R.
Camussi
, “
Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell
,”
J. Fluid Mech.
477
,
19
49
(
2003
).
58.
S.
Bhattacharya
,
A.
Pandey
,
A.
Kumar
, and
M. K.
Verma
, “
Complexity of viscous dissipation in turbulent thermal convection
,”
Phys. Fluids
30
,
031702
(
2018
).
59.
S.
Bhattacharya
,
R.
Samtaney
, and
M. K.
Verma
, “
Scaling and spatial intermittency of thermal dissipation in turbulent convection
,”
Phys. Fluids
31
,
075104
(
2019
).
60.
S.
Bhattacharya
,
S.
Sadhukhan
,
A.
Guha
, and
M. K.
Verma
, “
Similarities between the structure functions of thermal convection and hydrodynamic turbulence
,”
Phys. Fluids
31
,
115107
(
2019
).
61.
J. D.
Scheel
,
E.
Kim
, and
K. R.
White
, “
Thermal and viscous boundary layers in turbulent Rayleigh–Bénard convection
,”
J. Fluid Mech.
711
,
281
305
(
2012
).
62.
N.
Shi
,
M. S.
Emran
, and
J.
Schumacher
, “
Boundary layer structure in turbulent Rayleigh–Bénard convection
,”
J. Fluid Mech.
706
,
5
33
(
2012
).
63.
S.
Chandrasekhar
,
Hydrodynamic and Hydromagnetic Stability
(
Dover Publications
,
Oxford
,
1981
).
64.
M.
Breuer
,
S.
Wessling
,
J.
Schmalzl
, and
U.
Hansen
, “
Effect of inertia in Rayleigh-Bénard convection
,”
Phys. Rev. E
69
,
026302
(
2004
).
65.
G. K.
Batchelor
, “
Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity
,”
J. Fluid Mech.
5
,
113
133
(
1959
).
66.
M. K.
Verma
,
R. J.
Samuel
,
S.
Chatterjee
,
S.
Bhattacharya
, and
A.
Asad
, “
Challenges in fluid flow simulations using exascale computing
,”
SN Comput. Sci.
1
,
178
(
2020
).
67.
R. J.
Samuel
,
S.
Bhattacharya
,
A.
Asad
,
S.
Chatterjee
,
M. K.
Verma
,
R.
Samtaney
, and
S. F.
Anwer
, “
SARAS: A general-purpose PDE solver for fluid dynamics
,”
J. Open Source Software
(unpublished) (
2020
).
68.
G.
Grötzbach
, “
Spatial resolution requirements for direct numerical simulation of the Rayleigh-Bénard convection
,”
J. Comput. Phys.
49
,
241
264
(
1983
).
69.
M. K.
Verma
,
S.
Alam
, and
S.
Chatterjee
, “
Turbulent drag reduction in magnetohydrodynamic and quasi-static magnetohydrodynamic turbulence
,”
Phys. Plasmas
27
,
052301
(
2020
).
70.
E.
Frank
,
M.
Hall
,
G.
Holmes
,
R.
Kirkby
,
B.
Pfahringer
,
I. H.
Witten
, and
L.
Trigg
, “
Weka—A machine learning workbench for data mining
,” in
Data Mining and Knowledge Discovery Handbook
(
Springer
,
2009
), pp.
1269
1277
.
71.
X.-L.
Qiu
and
P.
Tong
, “
Temperature oscillations in turbulent Rayleigh-Bénard convection
,”
Phys. Rev. E
66
,
026308
(
2002
).
72.
A.
Nikolaenko
,
E.
Brown
,
D.
Funfschilling
, and
G.
Ahlers
, “
Heat transport by turbulent Rayleigh-Bénard convection in cylindrical cells with aspect ratio one and less
,”
J. Fluid Mech.
523
,
251
260
(
2005
).
73.
J. D.
Scheel
and
J.
Schumacher
, “
Local boundary layer scales in turbulent Rayleigh-Bénard convection
,”
J. Fluid Mech.
758
,
344
373
(
2014
).
74.
P.
Constantin
and
C. R.
Doering
, “
Infinite Prandtl number convection
,”
J. Stat. Phys.
94
,
159
172
(
1999
).
75.
C. R.
Doering
,
F.
Otto
, and
M. G.
Reznikoff
, “
Bounds on vertical heat transport for infinite-Prandtl-number Rayleigh-Bénard convection
,”
J. Fluid Mech.
560
,
229
241
(
2006
).
76.
X.
Zhu
,
V.
Mathai
,
R. J. A. M.
Stevens
,
R.
Verzicco
, and
D.
Lohse
, “
Transition to the ultimate regime in two-dimensional Rayleigh-Bénard convection
,”
Phys. Rev. Lett.
120
,
144502
(
2018
).
77.
S.
Pandey
,
J.
Schumacher
, and
K. R.
Sreenivasan
, “
A perspective on machine learning in turbulent flows
,”
J. Turbul.
21
,
567
584
(
2020
).
78.
E. J.
Parish
and
K.
Duraisamy
, “
A paradigm for data-driven predictive modeling using field inversion and machine learning
,”
J. Comput. Phys.
305
,
758
774
(
2016
).
79.
T.
Zürner
,
W.
Liu
,
D.
Krasnov
, and
J.
Schumacher
, “
Heat and momentum transfer for magnetoconvection in a vertical external magnetic field
,”
Phys. Rev. E
94
,
043108
(
2016
).
80.
T.
Zürner
, “
Refined mean field model of heat and momentum transfer in magnetoconvection
,”
Phys. Fluids
32
,
107101
(
2020
).
81.
D. H.
Kelley
and
T.
Weier
, “
Fluid mechanics of liquid metal batteries
,”
Appl. Mech. Rev.
70
,
020801
(
2018
).
82.
V. N.
Prakash
,
K. R.
Sreenivas
, and
J. H.
Arakeri
, “
The role of viscosity contrast on plume structure in laboratory modeling of mantle convection
,”
Chem. Eng. Sci.
158
,
245
256
(
2017
).
You do not currently have access to this content.