Pattern formation due to oscillatory Marangoni instability in a thin film heated from below is studied. We focus on the stability of patterns that are produced by nonlinear interaction of two standing waves propagating at the angle ϕ between the wave vectors. We provide weakly nonlinear analysis within the amplitude equations, which govern the evolution of the layer thickness and the characteristic temperature. This leads to a set of four complex Landau equations that govern the evolution of wave amplitudes. The coefficients of Landau equations, which define pattern formation, have been calculated in a wide range of governing parameters. Stable traveling rectangles and alternating rolls on a rhombic lattice are detected.

1.
M.
Lappa
,
Thermal Convection: Patterns, Evolution and Stability
(
John Wiley & Sons
,
Chichester
,
2009
).
2.
M.
Lappa
,
Fluids, Materials and Microgravity: Numerical Techniques and Insights to Physics
(
Elsevier Science
,
Oxford
,
2004
).
3.
P. N.
Manz
,
J. S.
O’Connor
, and
G.
Simone
,
Microfluidics and Lab-on-a-Chip
(
RSC Publishing
,
2020
).
4.
R.
Hoyle
,
Pattern Formation: An Introduction to Methods
(
Cambridge University Press
,
2006
).
5.
A. A.
Nepomnyashchy
,
M. G.
Velarde
, and
P.
Colinet
,
Interfacial Phenomena and Convection
(
Chapman & Hall/CRC
,
Boca Raton
,
2002
).
6.
A.
Nepomnyashchy
,
I.
Simanovskii
, and
J. C.
Legros
,
Interfacial Convection in Multilayer Systems
, 2nd ed. (
Springer
,
New York
,
2012
).
7.
S.
Shklyaev
and
A.
Nepomnyashchy
,
Longwave Instabilities and Patterns in Fluids
(
Birkhauser
,
New York
,
2017
).
8.
A. B.
Mikishev
and
A. A.
Nepomnyashchy
, “
Weakly nonlinear analysis of long-wave Marangoni convection in a liquid layer covered by insoluble surfactant
,”
Phys. Rev. Fluids
4
,
094002
(
2019
).
9.
R.
Patne
,
Y.
Agnon
, and
A.
Oron
, “
Marangoni instability in the linear Jeffreys fluid with a deformable surface
,”
Phys. Rev. Fluids
5
,
084005
(
2020
).
10.
S.
Shklyaev
,
M.
Khenner
, and
A. A.
Alabuzhev
, “
Oscillatory and monotonic modes of long-wave Marangoni convection in a thin film
,”
Phys. Rev. E
82
,
025302
(
2010
).
11.
S.
Shklyaev
,
M.
Khenner
, and
A. A.
Alabuzhev
, “
Long-wave Marangoni convection in a thin film heated from below
,”
Phys. Rev. E
85
,
016328
(
2012
).
12.
A. E.
Samoilova
and
N. I.
Lobov
, “
On the oscillatory Marangoni instability in a thin layer heated from below
,”
Phys. Fluids
26
,
064101
(
2014
).
13.
J. R. A.
Pearson
, “
On convection cells induced by surface tension
,”
J. Fluid Mech.
4
,
489
(
1958
).
14.
L. E.
Scriven
and
C. V.
Sternling
, “
On cellular convection driven by surface-tension gradients: Effects of mean surface tension and surface viscosity
,”
J. Fluid Mech.
19
,
321
(
1964
).
15.
A. E.
Samoilova
and
S.
Shklyaev
, “
Oscillatory Marangoni convection in a liquid-gas system heated from below
,”
Eur. Phys. J. - Spec. Top.
224
,
241
(
2015
).
16.
N.
Dong
and
L.
Kondic
, “
Instability of nanometric fluid films on a thermally conductive substrate
,”
Phys. Rev. Fluids
1
,
063901
(
2016
).
17.
W.
Batson
,
L. J.
Cummings
,
D.
Shirokoff
, and
L.
Kondic
, “
Oscillatory thermocapillary instability of a film heated by a thick substrate
,”
J. Fluid Mech.
872
,
928
(
2019
).
18.
K. A.
Smith
, “
On convection instability induced by surface tension gradient
,”
J. Fluid Mech.
24
,
401
(
1966
).
19.
M.
Silber
and
E.
Knobloch
, “
Hopf bifurcation on a square lattice
,”
Nonlinearity
4
,
1063
(
1991
).
20.
A. E.
Samoilova
and
A.
Nepomnyashchy
, “
Nonlinear feedback control of Marangoni wave patterns in a thin film heated from below
,”
Physica D
412
,
132627
(
2020
).
You do not currently have access to this content.