In this paper, we present two deep learning-based hybrid data-driven reduced-order models for prediction of unsteady fluid flows. These hybrid models rely on recurrent neural networks (RNNs) to evolve low-dimensional states of unsteady fluid flow. The first model projects the high-fidelity time series data from a finite element Navier–Stokes solver to a low-dimensional subspace via proper orthogonal decomposition (POD). The time-dependent coefficients in the POD subspace are propagated by the recurrent net (closed-loop encoder–decoder updates) and mapped to a high-dimensional state via the mean flow field and the POD basis vectors. This model is referred to as POD-RNN. The second model, referred to as the convolution recurrent autoencoder network (CRAN), employs convolutional neural networks (instead of POD) as layers of linear kernels with nonlinear activations, to extract low-dimensional features from flow field snapshots. The flattened features are advanced using a recurrent (closed-loop manner) net and up-sampled (transpose convoluted) gradually to high-dimensional snapshots. Two benchmark problems of the flow past a cylinder and the flow past side-by-side cylinders are selected as the unsteady flow problems to assess the efficacy of these models. For the problem of the flow past a single cylinder, the performance of both the models is satisfactory and the CRAN model is found to be overkill. However, the CRAN model completely outperforms the POD-RNN model for a more complicated problem of the flow past side-by-side cylinders involving the complex effects of vortex-to-vortex and gap flow interactions. Owing to the scalability of the CRAN model, we introduce an observer-corrector method for calculation of integrated pressure force coefficients on the fluid–solid boundary on a reference grid. This reference grid, typically a structured and uniform grid, is used to interpolate scattered high-dimensional field data as snapshot images. These input images are convenient in training the CRAN model, which motivates us to further explore the application of the CRAN-based models for prediction of fluid flows.

1.
G.
Berkooz
,
P.
Holmes
, and
J. L.
Lumley
, “
The proper orthogonal decomposition in the analysis of turbulent flows
,”
Annu. Rev. Fluid Mech.
25
(
1
),
539
575
(
1993
).
2.
J.
Burkardt
,
M.
Gunzburger
, and
H.-C.
Lee
, “
POD and CVT-based reduced-order modeling of Navier–Stokes flows
,”
Comput. Methods Appl. Mech. Eng.
196
(
1-3
),
337
355
(
2006
).
3.
W.
Yao
and
R. K.
Jaiman
, “
Model reduction and mechanism for the vortex-induced vibrations of bluff bodies
,”
J. Fluid Mech.
827
,
357
393
(
2017
).
4.
S.
Bukka
,
A.
Magee
, and
R.
Jaiman
, “
Stability analysis of passive suppression for vortex-induced vibration
,”
J. Fluid Mech.
886
,
A12
(
2020
).
5.
S. B.
Reddy
,
A. R.
Magee
, and
R. K.
Jaiman
, “
A data-driven approach for the stability analysis of vortex-induced vibration
,” in
ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering
(
American Society of Mechanical Engineers
,
2018
), p.
V002T08A004
.
6.
K.
Duraisamy
,
Z. J.
Zhang
, and
A. P.
Singh
, “
New approaches in turbulence and transition modeling using data-driven techniques
,” in
53rd AIAA Aerospace Sciences Meeting
(
AIAA
,
2015
), p.
1284
.
7.
T.
Miyanawala
and
R.
Jaiman
, “
An efficient deep learning technique for the Navier-Stokes equations: Application to unsteady wake flow dynamics
,” arXiv:1710.09099 (
2017
).
8.
J.-X.
Wang
,
J.-L.
Wu
, and
H.
Xiao
, “
Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data
,”
Phys. Rev. Fluids
2
(
3
),
034603
.
9.
Y.
LeCun
,
Y.
Bengio
, and
G.
Hinton
, “
Deep learning
,”
Nature
521
(
7553
),
436
(
2015
).
10.
A. T.
Mohan
and
D. V.
Gaitonde
, “
A deep learning based approach to reduced order modeling for turbulent flow control using LSTM neural networks
,” arXiv:1804.09269 (
2018
).
11.
Z.
Wang
,
D.
Xiao
,
F.
Fang
,
R.
Govindan
,
C. C.
Pain
, and
Y.
Guo
, “
Model identification of reduced order fluid dynamics systems using deep learning
,”
Int. J. Numer. Methods Fluids
86
(
4
),
255
268
(
2018
).
12.
T. P.
Miyanawala
and
R. K.
Jaiman
, “
Decomposition of wake dynamics in fluid–structure interaction via low-dimensional models
,”
J. Fluid Mech.
867
,
723
764
(
2019
).
13.
T.
Murata
,
K.
Fukami
, and
K.
Fukagata
, “
Nonlinear mode decomposition with convolutional neural networks for fluid dynamics
,”
J. Fluid Mech.
882
,
A13
(
2020
).
14.
S. L.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
, “
Discovering governing equations from data by sparse identification of nonlinear dynamical systems
,”
Proc. Natl. Acad. Sci. U. S. A.
113
(
15
),
3932
3937
(
2016
).
15.
S.
Rudy
,
A.
Alla
,
S. L.
Brunton
, and
J. N.
Kutz
, “
Data-driven identification of parametric partial differential equations
,”
SIAM J. Appl. Dyn. Syst.
18
(
2
),
643
660
(
2019
).
16.
M.
Raissi
,
Z.
Wang
,
M. S.
Triantafyllou
, and
G. E.
Karniadakis
, “
Deep learning of vortex-induced vibrations
,”
J. Fluid Mech.
861
,
119
137
(
2019
).
17.
K.
Champion
,
B.
Lusch
,
J. N.
Kutz
, and
S. L.
Brunton
, “
Data-driven discovery of coordinates and governing equations
,”
Proc. Natl. Acad. Sci. U. S. A.
116
(
45
),
22445
22451
(
2019
).
18.
P.
Choudhury
,
R.
Allen
, and
M.
Endres
, “
Developing theory using machine learning methods
,” available at: SSRN 3251077,
2018
.
19.
Z.
Long
,
Y.
Lu
, and
B.
Dong
, “
PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network
,”
J. Comput. Phys.
399
,
108925
(
2019
).
20.
S.
Pan
and
K.
Duraisamy
, “
Data-driven discovery of closure models
,”
SIAM J. Appl. Dyn. Syst.
17
(
4
),
2381
2413
(
2018
).
21.
T. Q.
Chen
,
Y.
Rubanova
,
J.
Bettencourt
, and
D. K.
Duvenaud
, “
Neural ordinary differential equations
,” in
Advances in Neural Information Processing Systems
(
Curran Associates
,
2018
), pp.
6571
6583
.
22.
R.
Maulik
,
A.
Mohan
,
B.
Lusch
,
S.
Madireddy
, and
P.
Balaprakash
, “
Time-series learning of latent-space dynamics for reduced-order model closure
,”
Phys. D: Nonlinear Phenom.
405
,
132368
(
2020
).
23.
S.
Jeong
,
B.
Solenthaler
,
M.
Pollefeys
,
M.
Gross
 et al, “
Data-driven fluid simulations using regression forests
,”
ACM Trans. Graphics
34
(
6
),
199
(
2015
).
24.
K.
Um
,
X.
Hu
, and
N.
Thuerey
, “
Liquid splash modeling with neural networks
,” in
Computer Graphics Forum
(
Wiley Online Library
,
2018
), Vol. 37, pp.
171
182
.
25.
S.
Wiewel
,
M.
Becher
, and
N.
Thuerey
, “
Latent space physics: Towards learning the temporal evolution of fluid flow
,” in
Computer Graphics Forum
(
Wiley Online Library
,
2019
), Vol. 38, pp.
71
82
.
26.
Y.
Xie
,
E.
Franz
,
M.
Chu
, and
N.
Thuerey
, “
tempoGAN: A temporally coherent, volumetric GAN for super-resolution fluid flow
,”
ACM Trans. Graphics
37
(
4
),
95
(
2018
).
27.
B.
Kim
,
V. C.
Azevedo
,
N.
Thuerey
,
T.
Kim
,
M.
Gross
, and
B.
Solenthaler
, “
Deep fluids: A generative network for parameterized fluid simulations
,” in
Computer Graphics Forum
(
Wiley Online Library
,
2019
), Vol. 38, pp.
59
70
.
28.
B.
Bonev
,
L.
Prantl
, and
N.
Thuerey
, “
Pre-computed liquid spaces with generative neural networks and optical flow
,” arXiv:1704.078543 (
2017
).
29.
N.
Thuerey
,
K.
Weißenow
,
L.
Prantl
, and
X.
Hu
, “
Deep learning methods for Reynolds-averaged Navier-Stokes simulations of airfoil flows
AIAA J.
58
(
1
),
25
36
(
2020
).
30.
S.
Bhatnagar
,
Y.
Afshar
,
S.
Pan
,
K.
Duraisamy
, and
S.
Kaushik
, “
Prediction of aerodynamic flow fields using convolutional neural networks
,”
Comput. Mech.
64
,
525
(
2019
).
31.
K. T.
Carlberg
,
A.
Jameson
,
M. J.
Kochenderfer
,
J.
Morton
,
L.
Peng
, and
F. D.
Witherden
, “
Recovering missing CFD data for high-order discretizations using deep neural networks and dynamics learning
,”
J. Comput. Phys.
395
,
105
(
2019
).
32.
M.
Korda
and
I.
Mezić
, “
Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control
,”
Automatica
93
,
149
160
(
2018
).
33.
S.
Peitz
and
S.
Klus
, “
Koopman operator-based model reduction for switched-system control of PDEs
,”
Automatica
106
,
184
191
(
2019
).
34.
Z.
Liu
,
S.
Kundu
,
L.
Chen
, and
E.
Yeung
, “
Decomposition of nonlinear dynamical systems using Koopman Gramians
,” in
2018 Annual American Control Conference (ACC)
(
IEEE
,
2018
), pp.
4811
4818
.
35.
I.
Mezić
, “
Analysis of fluid flows via spectral properties of the Koopman operator
,”
Annu. Rev. Fluid Mech.
45
,
357
378
(
2013
).
36.
M.
Korda
and
I.
Mezić
, “
On convergence of extended dynamic mode decomposition to the Koopman operator
,”
J. Nonlinear Sci.
28
(
2
),
687
710
(
2018
).
37.
M.
Budisic
,
M.
Ryan
, and
I.
Mezić
, “
Applied Koopmanism
,”
Chaos
22
(
4
),
047510
(
2012
).
38.
S.
Pan
and
K.
Duraisamy
, “
Long-time predictive modeling of nonlinear dynamical systems using neural networks
,”
Complexity
2018
,
4801012
.
39.
S.
Pan
and
K.
Duraisamy
, “
Physics-informed probabilistic learning of linear embeddings of non-linear dynamics with guaranteed stability
,”
SIAM J. Appl. Dyn. Syst.
19
(
1
),
480
509
(
2020
).
40.
K.
Yeo
and
I.
Melnyk
, “
Deep learning algorithm for data-driven simulation of noisy dynamical system
,”
J. Comput. Phys.
376
,
1212
1231
(
2019
).
41.
S. E.
Otto
and
C. W.
Rowley
, “
Linearly recurrent autoencoder networks for learning dynamics
,”
SIAM J. Appl. Dyn. Syst.
18
(
1
),
558
593
(
2019
).
42.
B.
Lusch
,
J. N.
Kutz
, and
S. L.
Brunton
, “
Deep learning for universal linear embeddings of nonlinear dynamics
,”
Nat. Commun.
9
(
1
),
4950
(
2018
).
43.
T.
Miyanawala
and
R.
Jaiman
, “
A hybrid data-driven deep learning technique for fluid-structure interaction
,” in International Conference on Offshore Mechanics and Arctic Engineering (ASME, 2019), Vol. 58776, p. V002T08A004.
44.
K.
Lee
and
K. T.
Carlberg
, “
Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders
,”
J. Comput. Phys.
404
,
108973
(
2020
).
45.
N. B.
Erichson
,
M.
Muehlebach
, and
M. W.
Mahoney
, “
Physics-informed autoencoders for Lyapunov-stable fluid flow prediction
,” arXiv:1905.10866 (
2019
).
46.
F. J.
Gonzalez
and
M.
Balajewicz
, “
Deep convolutional recurrent autoencoders for learning low-dimensional feature dynamics of fluid systems
,” arXiv:1808.01346 (
2018
).
47.
B.
Liu
and
R. K.
Jaiman
, “
Interaction dynamics of gap flow with vortex-induced vibration in side-by-side cylinder arrangement
,”
Phys. Fluids
28
(
12
),
127103
(
2016
).
48.
J. E.
D’Souza
,
R. K.
Jaiman
, and
C. K.
Mak
, “
Dynamics of tandem cylinders in the vicinity of a plane moving wall
,”
Comput. Fluids
124
,
117
135
(
2016
).
49.
B.
Liu
and
R.
Jaiman
, “
Dynamics of gap flow interference in a vibrating side-by-side arrangement of two circular cylinders at moderate Reynolds number
,” arXiv:1801.05109 (
2018
).
50.
R. C.
Mysa
,
A.
Kaboudian
, and
R. K.
Jaiman
, “
On the origin of wake-induced vibration in two tandem circular cylinders at low Reynolds number
,”
J. Fluids Struct.
61
,
76
98
(
2016
).
51.
R. K.
Jaiman
,
M. Z.
Guan
, and
T. P.
Miyanawala
, “
Partitioned iterative and dynamic subgrid-scale methods for freely vibrating square-section structures at subcritical Reynolds number
,”
Comput. Fluids
133
,
68
89
(
2016
).
52.
R. K.
Jaiman
,
N. R.
Pillalamarri
, and
M. Z.
Guan
, “
A stable second-order partitioned iterative scheme for freely vibrating low-mass bluff bodies in a uniform flow
,”
Comput. Methods Appl. Mech. Eng.
301
,
187
215
(
2016
).
53.
J.
Liu
,
R. K.
Jaiman
, and
P. S.
Gurugubelli
, “
A stable second-order scheme for fluid-structure interaction with strong added-mass effects
,”
J. Comput. Phys.
270
,
687
710
(
2014
).
54.
R.
Jaiman
,
P.
Geubelle
,
E.
Loth
, and
X.
Jiao
, “
Transient fluid–structure interaction with non-matching spatial and temporal discretizations
,”
Comput. Fluids
50
(
1
),
120
135
(
2011
).
55.
SciPy reference guide, release 1.4.1, https://docs.scipy.org/doc/scipy-1.4.1/scipy-ref-1.4.1.pdf,
2019
.
56.
J. N.
Kani
and
A. H.
Elsheikh
, “
Dr-rnn: A deep residual recurrent neural network for model reduction
,” arXiv:1709.00939 (
2017
).
57.
O.
Ogunmolu
,
X.
Gu
,
S.
Jiang
, and
N.
Gans
, “
Nonlinear systems identification using deep dynamic neural networks
,” arXiv:1610.01439 (
2016
).
58.
K.
Yeo
, “
Model-free prediction of noisy chaotic time series by deep learning
,” arXiv:1710.01693 (
2017
).
59.
C.
Olah
, “Understanding Lstm networks,” available at https://colah.github.io/posts/2015-08-Understanding-LSTMs/.
60.
Q.
Li
,
F.
Dietrich
,
E. M.
Bollt
, and
I. G.
Kevrekidis
, “
Extended dynamic mode decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the Koopman operator
,”
Chaos
27
(
10
),
103111
(
2017
).
61.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” arXiv:1412.6980 (
2014
).
62.
R.
Mojgani
and
M.
Balajewicz
, “
Physics-aware registration based auto-encoder for convection dominated PDEs
,” arXiv:2006.15655 (
2020
).
63.
T.
Taddei
, “
A registration method for model order reduction: Data compression and geometry reduction
,”
SIAM J. Sci. Comput.
42
(
2
),
A997
A1027
(
2020
).
64.
S. R.
Bukka
, “
Data-driven computing for the stability analysis and prediction of fluid-structure interaction
,” Ph.D. thesis,
National University of Singapore
,
2019
.
65.
S. R.
Bukka
,
A. R.
Magee
, and
R. K.
Jaiman
, “
Deep convolutional recurrent autoencoders for flow field prediction
,” arXiv:2003.12147 (
2020
).
66.
S. B.
Reddy
,
A. R.
Magee
, and
R. K.
Jaiman
, “
Reduced order model for unsteady fluid flows via recurrent neural networks
,” in
ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering
(
American Society of Mechanical Engineers
,
2019
).
You do not currently have access to this content.