Bubbles dispersed in thin liquid layers are ubiquitous and play important roles in the heat and mass transfer in nature and industrial processes including the energy, chemical, and biology engineering; thus, understanding the dynamics of bubbles confined in a liquid layer remains an important topic in multiphase flows. Here, we report the dynamics of bubble formation from a submerged orifice in a thin liquid layer with a thickness comparable to the bubble size. First, four flow regimes, detachment, jetting bursting, non-jetting bursting, and hole-opened bursting, are observed experimentally and their typical features are analyzed. Then, the evolutions of bubble size at different regimes are studied, and a quasi-static force model is proposed to predict the bubble size, which agrees well with the experimental results. We demonstrate the role of the capillary force exerted by the liquid film in the bubble cap and bubble geometry confined in the liquid layer in modulating the bubble size. Finally, a regime map regarding the liquid layer thickness and surface tension is provided and the criteria between different regimes are discussed based on the bubble geometry analysis and energy balance. Our experimental investigation and theoretical analysis provide insights into the formation and bursting dynamics of bubbles confined in a liquid layer.

1.
Y. S.
Joung
and
C. R.
Buie
, “
Aerosol generation by raindrop impact on soil
,”
Nat. Commun.
6
,
6083
(
2015
).
2.
Y. S.
Joung
,
Z.
Ge
, and
C. R.
Buie
, “
Bioaerosol generation by raindrops on soil
,”
Nat. Commun.
8
,
14668
(
2017
).
3.
S. R. G.
Vadlamudi
and
A. K.
Nayak
, “
Sonneting critical heat flux: New insights in boiling multiphase flow
,”
Phys. Fluids
32
,
097107
(
2020
).
4.
T.
Ueda
,
M.
Inoue
, and
S.
Nagatome
, “
Critical heat flux and droplet entrainment rate in boiling of falling liquid films
,”
Int. J. Heat Mass Transfer
24
,
1257
(
1981
).
5.
Q.
Wang
and
R.
Chen
, “
Ultrahigh flux thin film boiling heat transfer through nanoporous membranes
,”
Nano Lett.
18
,
3096
(
2018
).
6.
R.
Kumar
and
N. K.
Kuloor
,
The Formation of Bubbles and Drops
(
Academic Press
,
1970
).
7.
H.
Tsuge
and
S.-I.
Hibino
, “
Bubble formation from an orifice submerged in liquids
,”
Chem. Eng. Commun.
22
,
63
(
1983
).
8.
A. V.
Byakova
,
S. V.
Gnyloskurenko
,
T.
Nakamura
, and
O. I.
Raychenko
, “
Influence of wetting conditions on bubble formation at orifice in an inviscid liquid: Mechanism of bubble evolution
,”
Colloids Surf., A
229
,
19
(
2003
).
9.
A.
Georgoulas
,
P.
Koukouvinis
,
M.
Gavaises
, and
M.
Marengo
, “
Numerical investigation of quasi-static bubble growth and detachment from submerged orifices in isothermal liquid pools: The effect of varying fluid properties and gravity levels
,”
Int. J. Multiphase Flow
74
,
59
(
2015
).
10.
H. N.
Oguz
and
A.
Prosperetti
, “
Dynamics of bubble growth and detachment from a needle
,”
J. Fluid Mech.
257
,
111
(
1993
).
11.
Y.
Chen
,
S.
Liu
,
R.
Kulenovic
, and
R.
Mertz
, “
Experimental study on macroscopic contact line behaviors during bubble formation on submerged orifice and comparison with numerical simulations
,”
Phys. Fluids
25
,
092105
(
2013
).
12.
K.
Loubière
and
G.
Hébrard
, “
Bubble formation from a flexible hole submerged in an inviscid liquid
,”
Chem. Eng. Sci.
58
,
135
(
2003
).
13.
E.
Mohseni
,
J.
Jose Kalayathine
,
S. F.
Reinecke
, and
U.
Hampel
, “
Dynamics of bubble formation at micro-orifices under constant gas flow conditions
,”
Int. J. Multiphase Flow
132
,
103407
(
2020
).
14.
S.
Ghaemi
,
P.
Rahimi
, and
D. S.
Nobes
, “
The effect of gas-injector location on bubble formation in liquid cross flow
,”
Phys. Fluids
22
,
043305
(
2010
).
15.
W.
Zhang
and
R. B. H.
Tan
, “
A model for bubble formation and weeping at a submerged orifice with liquid cross-flow
,”
Chem. Eng. Sci.
58
,
287
(
2003
).
16.
W. B.
Wu
,
Y. L.
Liu
, and
A. M.
Zhang
, “
Numerical investigation of 3D bubble growth and detachment
,”
Ocean Eng.
138
,
86
(
2017
).
17.
P.
Stanovsky
,
M. C.
Ruzicka
,
A.
Martins
, and
J. A.
Teixeira
, “
Meniscus dynamics in bubble formation: A parametric study
,”
Chem. Eng. Sci.
66
,
3258
(
2011
).
18.
M.
Jamialahmadi
,
M. R.
Zehtaban
,
H.
Müller-Steinhagen
,
A.
Sarrafi
, and
J. M.
Smith
, “
Study of bubble formation under constant flow conditions
,”
Chem. Eng. Res. Des.
79
,
523
(
2001
).
19.
R. L.
Muller
and
R. G. H.
Prince
, “
Regimes of bubbling and jetting from submerged orifices
,”
Chem. Eng. Sci.
27
,
1583
(
1972
).
20.
M.
Li
,
L.
Hu
,
W.
Chen
,
H.
Xie
, and
X.
Fu
, “
Submerged injection of gas into a thin liquid sheet
,”
Int. J. Multiphase Flow
110
,
118
(
2019
).
21.
M.
Li
,
L.
Hu
,
H.
Xu
,
W.
Chen
,
H.
Xie
, and
X.
Fu
, “
Jet formation during the gas penetration through a thin liquid layer
,”
Phys. Fluids
31
,
017105
(
2019
).
22.
J. S.
Lee
,
B. M.
Weon
,
S. J.
Park
,
J. H.
Je
,
K.
Fezzaa
, and
W.-K.
Lee
, “
Size limits the formation of liquid jets during bubble bursting
,”
Nat. Commun.
2
,
367
(
2011
).
23.
L.
Deike
,
E.
Ghabache
,
G.
Liger-Belair
,
A. K.
Das
,
S.
Zaleski
,
S.
Popinet
, and
T.
Séon
, “
Dynamics of jets produced by bursting bubbles
,”
Phys. Rev. Fluids
3
,
013603
(
2018
).
24.
P. L. L.
Walls
,
L.
Henaux
, and
J. C.
Bird
, “
Jet drops from bursting bubbles: How gravity and viscosity couple to inhibit droplet production
,”
Phys. Rev. E
92
,
021002
(
2015
).
25.
A. M.
Gañán-Calvo
, “
Revision of bubble bursting: Universal scaling laws of top jet drop size and speed
,”
Phys. Rev. Lett.
119
,
204502
(
2017
).
26.
J. M.
Gordillo
and
J.
Rodríguez-Rodríguez
, “
Capillary waves control the ejection of bubble bursting jets
,”
J. Fluid Mech.
867
,
556
(
2019
).
27.
T.
Tate
, “
XXX. On the magnitude of a drop of liquid formed under different circumstances
,”
London, Edinburgh Dublin Philos. Mag. J. Sci.
27
,
176
(
1864
).
28.
A. A.
Kulkarni
and
J. B.
Joshi
, “
Bubble formation and bubble rise velocity in gas–liquid systems: A review
,”
Ind. Eng. Chem. Res.
44
,
5873
(
2005
).
29.
P.
Singh
and
D. D.
Joseph
, “
Fluid dynamics of floating particles
,”
J. Fluid Mech.
530
,
31
(
2005
).
30.
E.
Bormashenko
,
Physics of Wetting: Phenomena and Applications of Fluids on Surfaces
(
Walter de Gruyter GmbH & Co KG
,
2017
).
You do not currently have access to this content.