The rheology of a capsule suspension in two-dimensional confined Poiseuille flow is studied numerically using an immersed-boundary lattice Boltzmann method. The effects of capsule volume fraction ϕ and bending stiffness Eb on the rheology of the suspension are investigated first. The apparent viscosity does not monotonically increase with ϕ: the variation curve can be divided into four flow regimes. In each regime, there is a distinct equilibrium spatial configuration. The overall lateral position of the capsules is directly connected with the apparent viscosity. Then, we propose to investigate the effect of inertia on the capsule configuration in dilute cases and the capsule transport in concentrated cases. For dilute cases, phase diagrams of flow regimes on the (ϕ, Eb) plane are plotted. It is found that, as the Reynolds number (Re) increases, the range of values for regime I, with a single-line configuration, reduces, while the range for regime II (transition configuration) increases. It is highly correlated with the equilibrium lateral position of a single capsule. For even larger Re, the range for regime IV (random configuration) increases rapidly and dominates because the larger inertia makes the arrangement more random. For concentrated cases, we observe that the optimal volume fraction, at which the transport of capsules is a maximum, increases with Re. This study may help to understand the collective behavior of capsules in Poiseuille flows.

1.
Z.
Shen
,
A.
Farutin
,
M.
Thiébaud
, and
C.
Misbah
, “
Interaction and rheology of vesicle suspensions in confined shear flow
,”
Phys. Rev. Fluids
2
,
103101
(
2017
).
2.
M.
Thiebaud
,
Z.
Shen
,
J.
Harting
, and
C.
Misbah
, “
Prediction of anomalous blood viscosity in confined shear flow
,”
Phys. Rev. Lett.
112
,
238304
(
2014
).
3.
R.
Rivera
,
X.
Zhang
, and
M. D.
Graham
, “
Mechanistic theory of margination and flow-induced segregation in confined multicomponent suspensions: Simple shear and Poiseuille flows
,”
Phys. Rev. Fluids
1
,
060501
(
2016
).
4.
G.
Coupier
,
B.
Kaoui
,
T.
Podgorski
, and
C.
Misbah
, “
Noninertial lateral migration of vesicles in bounded Poiseuille flow
,”
Phys. Fluids
20
,
1
(
2008
).
5.
G.
Coupier
,
A.
Farutin
,
C.
Minetti
,
T.
Podgorski
, and
C.
Misbah
, “
Shape diagram of vesicles in Poiseuille flow
,”
Phys. Rev. Lett.
108
,
178106
(
2012
).
6.
C.
Pozrikidis
, “
Numerical simulation of cell motion in tube flow
,”
Ann. Biomed. Eng.
33
,
165
(
2005
).
7.
G.
Ma
,
J. S.
Hua
, and
H.
Li
, “
Numerical modeling of the behavior of an elastic capsule in a microchannel flow: The initial motion
,”
Phys. Rev. E
79
,
046710
(
2009
).
8.
H.
Li
and
G.
Ma
, “
Modeling performance of a two-dimensional capsule in a microchannel flow: Long-term lateral migration
,”
Phys. Rev. E
82
,
026304
(
2010
).
9.
W.
Xiong
and
J.
Zhang
, “
Shear stress variation induced by red blood cell motion in microvessel
,”
Ann. Biomed. Eng.
38
,
2649
(
2010
).
10.
L. L.
Shi
,
Y.
Yu
,
T. W.
Pan
, and
R.
Glowinski
, “
Oscillating motions of neutrally buoyant particle and red blood cell in Poiseuille flow in a narrow channel
,”
Phys. Fluids
26
,
041904
(
2014
).
11.
X.-Q.
Hu
,
A.-V.
Salsac
, and
D.
Barthès-Biesel
, “
Flow of a spherical capsule in a pore with circular or square cross-section
,”
J. Fluid Mech.
705
,
176
(
2011
).
12.
T.
Ye
,
H. X.
Shi
,
L. N.
Peng
, and
Y.
Li
, “
Numerical studies of a red blood cell in rectangular microchannels
,”
J. Appl. Phys.
122
,
084701
(
2017
).
13.
J. M.
Barakat
and
E. S. G.
Shaqfeh
, “
Stokes flow of vesicles in a circular tube
,”
J. Fluid Mech.
851
,
606
(
2018
).
14.
X.
Zhang
and
M. D.
Graham
, “
Multiplicity of stable orbits for deformable prolate capsules in shear flow
,”
Phys. Rev. Fluids
5
,
023603
(
2020
).
15.
N.
Tahiri
,
T.
Biben
,
H.
Ez-Zahraouy
,
A.
Benyoussef
, and
C.
Misbah
, “
On the problem of slipper shapes of red blood cells in the microvasculature
,”
Microvasc. Res.
85
,
40
(
2013
).
16.
Z.
Boujja
,
C.
Misbah
,
H.
Ez-Zahraouy
,
A.
Benyoussef
,
T.
John
,
C.
Wagner
, and
M. M.
Muller
, “
Vesicle dynamics in confined steady and harmonically modulated Poiseuille flows
,”
Phys. Rev. E
98
,
043111
(
2018
).
17.
Y.
Oya
and
T.
Kawakatsu
, “
Onsager’s variational principle for the dynamics of a vesicle in a Poiseuille flow
,”
J. Chem. Phys.
148
,
114905
(
2018
).
18.
B.
Kaoui
,
N.
Tahiri
,
T.
Biben
,
H.
Ez-Zahraouy
,
A.
Benyoussef
,
G.
Biros
, and
C.
Misbah
, “
Complexity of vesicle microcirculation
,”
Phys. Rev. E
84
,
041906
(
2011
).
19.
D. A.
Fedosov
,
M.
Peltomäki
, and
G.
Gompper
, “
Deformation and dynamics of red blood cells in flow through cylindrical microchannels
,”
Soft Matter
10
,
4258
(
2014
).
20.
D.
Alghalibi
,
M. E.
Rosti
, and
L.
Brandt
, “
Inertial migration of a deformable particle in pipe flow
,”
Phys. Rev. Fluids
4
,
104201
(
2019
).
21.
B.
Kaoui
,
G. H.
Ristow
,
I.
Cantat
,
C.
Misbah
, and
W.
Zimmermann
, “
Lateral migration of a two-dimensional vesicle in unbounded Poiseuille flow
,”
Phys. Rev. E
77
,
021903
(
2008
).
22.
J.
Zhang
, “
Effect of suspending viscosity on red blood cell dynamics and blood flows in microvessels
,”
Microcirculation
18
,
562
(
2011
).
23.
L. L.
Shi
,
T. W.
Pan
, and
R.
Glowinski
, “
Lateral migration and equilibrium shape and position of a single red blood cell in bounded Poiseuille flows
,”
Phys. Rev. E
86
,
056308
(
2012
).
24.
S.
Nix
,
Y.
Imai
,
D.
Matsunaga
,
T.
Yamaguchi
, and
T.
Ishikawa
, “
Lateral migration of a spherical capsule near a plane wall in Stokes flow
,”
Phys. Rev. E
90
,
043009
(
2014
).
25.
T.
Krüger
,
B.
Kaoui
, and
J.
Harting
, “
Interplay of inertia and deformability on rheological properties of a suspension of capsules
,”
J. Fluid Mech.
751
,
725
(
2014
).
26.
K. J.
Humphry
,
P. M.
Kulkarni
,
D. A.
Weitz
,
J. F.
Morris
, and
H. A.
Stone
, “
Axial and lateral particle ordering in finite Reynolds number channel flows
,”
Phys. Fluids
22
,
081703
(
2010
).
27.
G. R.
Lazaro
,
A.
Hernandez-Machado
, and
I.
Pagonabarraga
, “
Collective behavior of red blood cells in confined channels
,”
Eur. Phys. J. E
42
,
46
(
2019
).
28.
A.
Nait-Ouhra
,
A.
Farutin
,
H.
Ez-Zahraouy
,
A.
Benyoussef
, and
C.
Misbah
, “
Rheology of a confined vesicle suspension
,”
Phys. Rev. Fluids
4
,
103602
(
2019
).
29.
A.
Nait Ouhra
,
A.
Farutin
,
O.
Aouane
,
H.
Ez-Zahraouy
,
A.
Benyoussef
, and
C.
Misbah
, “
Shear thinning and shear thickening of a confined suspension of vesicles
,”
Phys. Rev. E
97
,
012404
(
2018
).
30.
Z.
Pan
,
R.
Zhang
,
C.
Yuan
, and
H.
Wu
, “
Direct measurement of microscale flow structures induced by inertial focusing of single particle and particle trains in a confined microchannel
,”
Phys. Fluids
30
,
102005
(
2018
).
31.
X.
Hu
,
J.
Lin
, and
X.
Ku
, “
Inertial migration of circular particles in Poiseuille flow of a power-law fluid
,”
Phys. Fluids
31
,
073306
(
2019
).
32.
W.
Liu
and
C.
Wu
, “
Analysis of inertial migration of neutrally buoyant particle suspensions in a planar Poiseuille flow with a coupled lattice Boltzmann method-discrete element method
,”
Phys. Fluids
31
,
063301
(
2019
).
33.
S.
Kahkeshani
,
H.
Haddadi
, and
D. D.
Carlo
, “
Preferred interparticle spacing in trains of particles in inertial microchannel flows
,”
J. Fluid Mech.
786
,
R3
(
2015
).
34.
A.
Farutin
,
Z. Y.
Shen
,
G.
Prado
,
V.
Audemar
,
H.
Ez-Zahraouy
,
A.
Benyoussef
,
B.
Polack
,
J.
Harting
,
P. M.
Vlahovska
,
T.
Podgorski
,
G.
Coupier
, and
C.
Misbah
, “
Optimal cell transport in straight channels and networks
,”
Phys. Rev. Fluids
3
,
103603
(
2018
).
35.
N.
Takeishi
,
M. E.
Rosti
,
Y.
Imai
,
S.
Wada
, and
L.
Brandt
, “
Haemorheology in dilute, semi-dilute and dense suspensions of red blood cells
,”
J. Fluid Mech.
872
,
818
(
2019
).
36.
S. K.
Doddi
and
P.
Bagchi
, “
Three-dimensional computational modeling of multiple deformable cells flowing in microvessels
,”
Phys. Rev. E
79
,
046318
(
2009
).
37.
J. R.
Clausen
,
D. A.
Reasor
, and
C. K.
Aidun
, “
The rheology and microstructure of concentrated non-colloidal suspensions of deformable capsules
,”
J. Fluid Mech.
685
,
202
(
2011
).
38.
H.
Zhao
and
E. S. G.
Shaqfeh
, “
The dynamics of a non-dilute vesicle suspension in a simple shear flow
,”
J. Fluid Mech.
725
,
709
(
2013
).
39.
J. T.
Ma
,
L. C.
Xu
,
F. B.
Tian
,
J.
Young
, and
J. C. S.
Lai
, “
Dynamic characteristics of a deformable capsule in a simple shear flow
,”
Phys. Rev. E
99
,
023101
(
2019
).
40.
S. K.
Doddi
and
P.
Bagchi
, “
Effect of inertia on the hydrodynamic interaction between two liquid capsules in simple shear flow
,”
Int. J. Multiphase Flow
34
,
375
(
2008
).
41.
A.
Kilimnik
,
W.
Mao
, and
A.
Alexeev
, “
Inertial migration of deformable capsules in channel flow
,”
Phys. Fluids
23
,
123302
(
2011
).
42.
A.
Nourbakhsh
,
S.
Mortazavi
, and
Y.
Afshar
, “
Three-dimensional numerical simulation of drops suspended in Poiseuille flow at non-zero Reynolds numbers
,”
Phys. Fluids
23
,
123303
(
2011
).
43.
S. J.
Shin
and
H. J.
Sung
, “
Inertial migration of an elastic capsule in a Poiseuille flow
,”
Phys. Rev. E
83
,
046321
(
2011
).
44.
Y.
Kim
and
M. C.
Lai
, “
Numerical study of viscosity and inertial effects on tank-treading and tumbling motions of vesicles under shear flow
,”
Phys. Rev. E
86
,
066321
(
2012
).
45.
A.
Laadhari
,
P.
Saramito
, and
C.
Misbah
, “
Vesicle tumbling inhibited by inertia
,”
Phys. Fluids
24
,
031901
(
2012
).
46.
D.
Salac
and
M. J.
Miksis
, “
Reynolds number effects on lipid vesicles
,”
J. Fluid Mech.
711
,
122
(
2012
).
47.
S. J.
Shin
and
H. J.
Sung
, “
Dynamics of an elastic capsule in moderate Reynolds number Poiseuille flow
,”
Int. J. Heat Fluid Flow
36
,
167
(
2012
).
48.
Z. Y.
Luo
,
S. Q.
Wang
,
L.
He
,
F.
Xu
, and
B. F.
Bai
, “
Inertia-dependent dynamics of three-dimensional vesicles and red blood cells in shear flow
,”
Soft Matter
9
,
9651
(
2013
).
49.
Y.-L.
Chen
, “
Inertia- and deformation-driven migration of a soft particle in confined shear and Poiseuille flow
,”
RSC Adv.
4
,
17908
(
2014
).
50.
L.
Shi
,
T. W.
Pan
, and
R.
Glowinski
, “
Deformation of a single red blood cell in bounded Poiseuille flows
,”
Phys. Rev. E
85
,
016307
(
2012
).
51.
K. H.
Jensen
,
W.
Kim
,
N. M.
Holbrook
, and
J. W. M.
Bush
, “
Optimal concentrations in transport systems
,”
J. R. Soc., Interface
10
,
20130138
(
2013
).
52.
P. M.
Vlahovska
,
T.
Podgorski
, and
C.
Misbah
, “
Vesicles and red blood cells in flow: From individual dynamics to rheology
,”
C. R. Phys.
10
,
775
(
2009
).
53.
P.
Bagchi
,
P. C.
Johnson
, and
A. S.
Popel
, “
Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow
,”
J. Biomech. Eng.
127
,
1070
(
2005
).
54.
C.
Pozrikidis
, “
Effect of membrane bending stiffness on the deformation of capsules in simple shear flow
,”
J. Fluid Mech.
440
,
269
(
2001
).
55.
J.
Zhang
,
P. C.
Johnson
, and
A. S.
Popel
, “
An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows
,”
Phys. Biol.
4
,
285
(
2007
).
56.
S.
Chen
and
G. D.
Doolen
, “
Lattice Boltzmann method for fluid flows
,”
Annu. Rev. Fluid Mech.
30
,
329
(
1998
).
57.
Z. L.
Guo
,
C. G.
Zheng
, and
B. C.
Shi
, “
Discrete lattice effects on the forcing term in the lattice Boltzmann method
,”
Phys. Rev. E
65
,
046308
(
2002
).
58.
C. S.
Peskin
, “
The immersed boundary method
,”
Acta Numer.
11
,
479
(
2002
).
59.
Z.-G.
Feng
and
E. E.
Michaelides
, “
The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems
,”
J. Comput. Phys.
195
,
602
(
2004
).
60.
Y.
Sui
,
Y. T.
Chew
,
P.
Roy
,
X. B.
Chen
, and
H. T.
Low
, “
Transient deformation of elastic capsules in shear flow: Effect of membrane bending stiffness
,”
Phys. Rev. E
75
,
066301
(
2007
).
61.
A.
Lamura
and
G.
Gompper
, “
Dynamics and rheology of vesicle suspensions in wall-bounded shear flow
,”
Europhys. Lett.
102
,
28004
(
2013
).
62.
P.
Bagchi
and
R. M.
Kalluri
, “
Rheology of a dilute suspension of liquid-filled elastic capsules
,”
Phys. Rev. E
81
,
056320
(
2010
).
63.
M.
Thiebaud
and
C.
Misbah
, “
Rheology of a vesicle suspension with finite concentration: A numerical study
,”
Phys. Rev. E
88
,
062707
(
2013
).
You do not currently have access to this content.