For deeper insights into the dynamics of dense sprays, the present experimental work investigates the shock-induced breakup of two identically sized water droplets in tandem formation. The breakup process is visualized in a shadowgraph system and captured by an ultra-high-speed camera. The experimental Weber number ranges from 13 to 180, and the separation distance between the droplets is varied between 1.2 and 10.5 times of the droplet diameter. While the tandem formation exerts marginal influence on the lead droplet, the breakup intensity of the trailing droplet is consistently attenuated as the separation distance falls below critical levels. The time of initial deformation is postponed, the maximum cross-stream diameter is reduced, and the mean drag coefficient is lowered. These effects are more profound at lower Weber numbers and closer separation distances. The attenuation of the breakup intensity is also reflected by the formation of smaller bags in bag and bag-and-stamen morphologies and by the narrower cross-stream dispersion of fragments in multibag and shear stripping morphologies. When positioned in close proximity to the lead droplet, the trailing droplet fails to follow the conventional breakup morphologies. Instead, it either punctures or coalesces with the lead droplet.

1.
R. D.
Reitz
and
R.
Diwakar
, “
Effect of drop breakup on fuel sprays
,”
SAE Tech. Pap. Ser. 1
95
(
3
),
218
227
(
1986
), available at https://www.jstor.org/stable/44725372.
2.
S.
Lagutkin
,
L.
Achelis
,
S.
Sheikhaliev
,
V.
Uhlenwinkel
, and
V.
Srivastava
, “
Atomization process for metal powder
,”
Mater. Sci. Eng. A
383
(
1
),
1
6
(
2004
).
3.
J.
Mostaghimi
,
M.
Pasandideh-Fard
, and
S.
Chandra
, “
Dynamics of splat formation in plasma spray coating process
,”
Plasma Chem. Plasma Process.
22
(
1
),
59
84
(
2002
).
4.
W. R.
Lane
, “
Shatter of drops in streams of air
,”
Ind. Eng. Chem.
43
(
6
),
1312
1317
(
1951
).
5.
J. O.
Hinze
, “
Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes
,”
AIChE J.
1
(
3
),
289
295
(
1955
).
6.
D. R.
Guildenbecher
,
C.
López-Rivera
, and
P. E.
Sojka
, “
Secondary atomization
,”
Exp. Fluids
46
(
3
),
371
402
(
2009
).
7.
M.
Pilch
and
C. A.
Erdman
, “
Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop
,”
Int. J. Multiphase Flow
13
(
6
),
741
757
(
1987
).
8.
G. M.
Faeth
,
L.-P.
Hsiang
, and
P.-K.
Wu
, “
Structure and breakup properties of sprays
,”
Int. J. Multiphase Flow
21
,
99
127
(
1995
).
9.
W.-H.
Chou
and
G. M.
Faeth
, “
Temporal properties of secondary drop breakup in the bag breakup regime
,”
Int. J. Multiphase Flow
24
(
6
),
889
912
(
1998
).
10.
D. D.
Joseph
,
J.
Belanger
, and
G. S.
Beavers
, “
Breakup of a liquid drop suddenly exposed to a high-speed airstream
,”
Int. J. Multiphase Flow
25
,
1263
1303
(
1999
).
11.
J.
Han
and
G.
Tryggvason
, “
Secondary breakup of axisymmetric liquid drops. I. Acceleration by a constant body force
,”
Phys. Fluids
11
(
12
),
3650
3667
(
1999
).
12.
A. A.
Ranger
and
J. A.
Nicholls
, “
Aerodynamic shattering of liquid drops
,”
AIAA J.
7
(
2
),
285
290
(
1969
).
13.
Z.
Liu
and
R. D.
Reitz
, “
An analysis of the distortion and breakup mechanisms of high speed liquid drops
,”
Int. J. Multiphase Flow
23
(
4
),
631
650
(
1997
).
14.
T. G.
Theofanous
and
G. J.
Li
, “
On the physics of aerobreakup
,”
Phys. Fluids
20
(
5
),
052103
(
2008
).
15.
Z.
Dai
and
G. M.
Faeth
, “
Temporal properties of secondary drop breakup in the multimode breakup regime
,”
Int. J. Multiphase Flow
27
(
2
),
217
236
(
2001
).
16.
Y.
Chen
,
E. P.
DeMauro
,
J. L.
Wagner
,
M.
Arienti
,
D. R.
Guildenbecher
,
P.
Farias
,
T. W.
Grasser
,
P.
Sanderson
,
S.
Albert
,
A.
Turpin
,
W.
Sealy
, and
R. S.
Ketchum
, “
Aerodynamic breakup and secondary drop formation for a liquid metal column in a shock-induced cross-flow
,” in
55th AIAA Aerospace Sciences Meeting
(
AIAA
,
2017
), p.
1892
.
17.
L.-P.
Hsiang
and
G. M.
Faeth
, “
Near-limit drop deformation and secondary breakup
,”
Int. J. Multiphase Flow
18
(
5
),
635
652
(
1992
).
18.
T. G.
Theofanous
,
G. J.
Li
, and
T. N.
Dinh
, “
Aerobreakup in rarefied supersonic gas flows
,”
J. Fluids Eng.
126
(
4
),
516
(
2004
).
19.
M.
Jain
,
R. S.
Prakash
,
G.
Tomar
, and
R. V.
Ravikrishna
, “
Secondary breakup of a drop at moderate Weber numbers
,”
Proc. R. Soc. A
471
(
2177
),
20140930
(
2015
).
20.
N.
Ashgriz
,
Handbook of Atomization and Sprays: Theory and Applications
(
Springer Science & Business Media
,
2011
).
21.
G. J.
Dorr
,
A. J.
Hewitt
,
S. W.
Adkins
,
J.
Hanan
,
H.
Zhang
, and
B.
Noller
, “
A comparison of initial spray characteristics produced by agricultural nozzles
,”
Crop Prot.
53
,
109
117
(
2013
).
22.
D. Y.
Liu
,
K.
Anders
, and
A.
Frohn
, “
Drag coefficients of single droplets moving in an infinite droplet chain on the axis of a tube
,”
Int. J. Multiphase Flow
14
(
2
),
217
232
(
1988
).
23.
J. A.
Mulholland
,
R. K.
Srivastava
, and
J. O. L.
Wendt
, “
Influence of droplet spacing on drag coefficient in nonevaporating, monodisperse streams
,”
AIAA J.
26
(
10
),
1231
1237
(
1988
).
24.
J. Y.
Poo
and
N.
Ashgriz
, “
Variation of drag coefficients in an interacting drop stream
,”
Exp. Fluids
11
(
1
),
1
8
(
1991
).
25.
S.
Temkin
and
G. Z.
Ecker
, “
Droplet pair interactions in a shock-wave flow field
,”
J. Fluid Mech.
202
,
467
497
(
1989
).
26.
Q. V.
Nguyen
and
D.
Dunn-Rankin
, “
Experiments examining drag in linear droplet packets
,”
Exp. Fluids
12
,
157
165
(
1992
).
27.
C. H.
Chiang
and
W. A.
Sirignano
, “
Axisymmetric calculations of three-droplet interactions
,”
Atomization Sprays
3
(
1
),
91
107
(
1993
).
28.
H.
Zhao
,
Z.
Wu
,
W.
Li
,
J.
Xu
, and
H.
Liu
, “
Interaction of two drops in the bag breakup regime by a continuous air jet
,”
Fuel
236
,
843
850
(
2019
).
29.
D.
Igra
and
K.
Takayama
, “
Experimental investigation of two cylindrical water columns subjected to planar shock wave loading
,”
J. Fluids Eng.
125
(
2
),
325
(
2003
).
30.
S.
Quan
,
J.
Lou
, and
H. A.
Stone
, “
Interactions between two deformable droplets in tandem subjected to impulsive acceleration by surrounding flows
,”
J. Fluid Mech.
684
,
384
406
(
2011
).
31.
T.
Kékesi
,
M.
Altimira
,
G.
Amberg
, and
L.
Prahl Wittberg
, “
Interaction between two deforming liquid drops in tandem and various off-axis arrangements subject to uniform flow
,”
Int. J. Multiphase Flow
112
,
193
218
(
2019
).
32.
D.
Stefanitsis
,
I.
Malgarinos
,
G.
Strotos
,
N.
Nikolopoulos
,
E.
Kakaras
, and
M.
Gavaises
, “
Numerical investigation of the aerodynamic breakup of droplets in tandem
,”
Int. J. Multiphase Flow
113
,
289
303
(
2019
).
33.
Z.
Wang
,
T.
Hopfes
,
M.
Giglmaier
, and
N. A.
Adams
, “
Effect of Mach number on droplet aerobreakup in shear stripping regime
,”
Exp. Fluids
61
(
9
),
1
17
(
2020
).
34.
J.
Kim
,
J. K.
Lee
, and
K. M.
Lee
, “
Accurate image super-resolution using very deep convolutional networks
,” in
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(
IEEE
,
2016
), pp.
1646
1654
.
35.
H.
Zhao
,
H.-F.
Liu
,
W.-F.
Li
, and
J.-L.
Xu
, “
Morphological classification of low viscosity drop bag breakup in a continuous air jet stream
,”
Phys. Fluids
22
(
11
),
114103
(
2010
).
36.
F. W.
Roos
and
W. W.
Willmarth
, “
Some experimental results on sphere and disk drag
,”
AIAA J.
9
(
2
),
285
291
(
1971
).
37.
T. G.
Theofanous
,
V. V.
Mitkin
,
C. L.
Ng
,
C.-H.
Chang
,
X.
Deng
, and
S.
Sushchikh
, “
The physics of aerobreakup. II. Viscous liquids
,”
Phys. Fluids
24
(
2
),
022104
(
2012
).
You do not currently have access to this content.