The present work investigates the causes of the circular hydraulic jump for both low- and high-viscosity liquids in an effort to address a recent dispute in the research community. We first validate our numerical model against existing experiments and then study the effects of different parameters involved in the problem. The influences of viscosity, gravity, and surface tension on the formation of the jump are comprehensively explored. We observe a significant difference in the mechanisms behind the hydraulic jump for low- and high-viscosity liquids, which have rarely been reported. Surface tension is found to be responsible for the low-viscosity jump, while gravity dominates the high-viscosity jump, which partially resolves the recent noise regarding the cause of the jump in a consistent manner.

1.
B.
Mohajer
and
R.
Li
, “
Circular hydraulic jump on finite surfaces with capillary limit
,”
Phys. Fluids
27
,
117102
(
2015
).
2.
K.
Choo
and
S. J.
Kim
, “
The influence of nozzle diameter on the circular hydraulic jump of liquid jet impingement
,”
Exp. Therm. Fluid Sci.
72
,
12
17
(
2016
).
3.
A.
Saberi
,
M. R.
Mahpeykar
, and
A. R.
Teymourtash
, “
Experimental measurement of radius of circular hydraulic jumps: Effect of radius of convex target plate
,”
Flow Meas. Instrum.
65
,
274
279
(
2019
).
4.
K. P.
Vishwanath
,
R.
Dasgupta
,
R.
Govindarajan
, and
K. R.
Sreenivas
, “
The effect of initial momentum flux on the circular hydraulic jump
,”
J. Fluids Eng.
137
,
061301
(
2015
).
5.
Y.
Wang
and
R. E.
Khayat
, “
The influence of heating on liquid jet spreading and hydraulic jump
,”
J. Fluid Mech.
883
,
A59
(
2020
).
6.
E. J.
Watson
, “
The radial spread of a liquid jet over a horizontal plane
,”
J. Fluid Mech.
20
,
481
499
(
1964
).
7.
J. W. M.
Bush
and
J. M.
Aristoff
, “
The influence of surface tension on the circular hydraulic jump
,”
J. Fluid Mech.
489
,
229
238
(
2003
).
8.
E.
Dressaire
,
L.
Courbin
,
J.
Crest
, and
H. A.
Stone
, “
Inertia dominated thin-film flows over microdecorated surfaces
,”
Phys. Fluids
22
,
073602
(
2010
).
9.
D.
Maynes
,
M.
Johnson
, and
B. W.
Webb
, “
Free-surface liquid jet impingement on rib patterned superhydrophobic surfaces
,”
Phys. Fluids
23
,
052104
(
2011
).
10.
J. F.
Prince
,
D.
Maynes
, and
J.
Crockett
, “
Analysis of laminar jet impingement and hydraulic jump on a horizontal surface with slip
,”
Phys. Fluids
24
,
102103
(
2012
).
11.
J. F.
Prince
,
D.
Maynes
, and
J.
Crockett
, “
Jet impingement and the hydraulic jump on horizontal surfaces with anisotropic slip
,”
Phys. Fluids
26
,
042104
(
2014
).
12.
N.
Rojas
,
M.
Argentina
, and
E.
Tirapegui
, “
A progressive correction to the circular hydraulic jump scaling
,”
Phys. Fluids
25
,
042105
(
2013
).
13.
Y.
Wang
and
R. E.
Khayat
, “
Impinging jet flow and hydraulic jump on a rotating disk
,”
J. Fluid Mech.
839
,
525
560
(
2018
).
14.
V. A.
Lubarda
and
K. A.
Talke
, “
Analysis of the equilibrium droplet shape based on an ellipsoidal droplet model
,”
Langmuir
27
,
10705
10713
(
2011
).
15.
Y.
Wang
and
R. E.
Khayat
, “
The role of gravity in the prediction of the circular hydraulic jump radius for high-viscosity liquids
,”
J. Fluid Mech.
862
,
128
161
(
2019
).
16.
I.
Tani
, “
Water jump in the boundary layer
,”
J. Phys. Soc. Jpn.
4
,
212
215
(
1949
).
17.
T.
Bohr
,
P.
Dimon
, and
V.
Putkaradze
, “
Shallow-water approach to the circular hydraulic jump
,”
J. Fluid Mech.
254
,
635
648
(
1993
).
18.
R. K.
Bhagat
,
N. K.
Jha
,
P. F.
Linden
, and
D. I.
Wilson
, “
On the origin of the circular hydraulic jump in a thin liquid film
,”
J. Fluid Mech.
851
,
R5-1
R5-11
(
2018
).
19.
R.
Fernandez-Feria
,
E.
Sanmiguel-Rojas
, and
E. S.
Benilov
, “
On the origin and structure of a stationary circular hydraulic jump
,”
Phys. Fluids
31
,
072104
(
2019
).
20.
C.
Ellegaard
,
A. E.
Hansen
,
A.
Haaning
, and
T.
Bohr
, “
Experimental results on flow separation and transitions in the circular hydraulic jump
,”
Phys. Scr.
T67
,
105
110
(
1996
).
21.
M.
Passandideh-Fard
,
A. R.
Teymourtash
, and
M.
Khavari
, “
Numerical study of circular hydraulic jump using volume-of-fluid method
,”
J. Fluids Eng.
133
,
011401
(
2011
).
22.
M.
Passandideh-Fard
and
E.
Roohi
, “
Transient simulations of cavitating flows using a modified volume-of-fluid (VOF) technique
,”
Int. J. Comput. Fluid Dyn.
22
(
1-2
),
97
114
(
2008
).
23.
N.
Rojas
and
E.
Tirapegui
, “
Harmonic solutions for polygonal hydraulic jumps in thin fluid films
,”
J. Fluid Mech.
780
,
99
119
(
2015
).
24.
ANSYS, Inc. Southpointe, Ansys Fluent Theory Guide, 2600,
ANSYS Drive
,
Canonsburg, PA
,
2015
.
25.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
225
(
1981
).
26.
J. P.
Van Doormaal
and
G. D.
Raithby
, “
Enhancements of the simple method for predicting incompressible fluid flows
,”
Numer. Heat Transfer
7
,
147
163
(
1984
).
27.
B. P.
Leonard
and
S.
Mokhtari
, “
Ultra-sharp nonoscillatory convection schemes for high-speed steady multidimensional flow
,” NASATM1-2568 (ICOMP-90-12),
NASA Lewis Research Center
,
1990
.
28.
J. U.
Brackbill
,
D. B.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
,
335
354
(
1992
).
29.
A.
Duchesne
,
L.
Lebon
, and
L.
Limat
, “
Constant Froude number in a circular hydraulic jump and its implication on the jump radius selection
,”
Europhys. Lett.
107
,
54002
(
2014
).
You do not currently have access to this content.