The present work showcases a mechanism of asymmetric solvent depletion using vapor-mediated interaction that can non-intrusively regulate the site of crystal precipitation. In general, the flow pattern inside a drying sessile saline droplet leads to circumferential deposition of salt crystals at the end of evaporation. Instead, we show that our proposed approach can manipulate the spatial location of crystal precipitation. The introduction of a pendant ethanol droplet near the sessile saline droplet’s vicinity creates an asymmetric ethanol vapor gradient around the sessile drop. The differential adsorption of ethanol vapor on the surface of the saline droplet gives rise to a spatial surface tension gradient. This, in turn, enhances the internal convection [∼O (102–103)] within the saline droplet. The vigorous and non-uniform flow promotes targeted contact line depinning, ensuring preferential segregation of the salt crystals. Using this methodology, we can inhibit crystal formation at selected locations and favorably control its deposition in definite regions. The interplay of flow hydrodynamics and the associated contact line motion governs this phenomenon marked by the inception and growth of crystals at a preferential site. The universal character of such a phenomenon is verified for a variety of salt solutions on the glass substrate. Tweaking of contact line motion using vapor mediation can be used as a strategic tool for controlling the salt crystallization sites for various potential applications starting from water purification to portable diagnostics, fouling, and scaling, particularly in cases that require the separation of unwarranted solutes from solvents.

1.
M. J.
Qazi
,
R. W.
Liefferink
,
S. J.
Schlegel
,
E. H. G.
Backus
,
D.
Bonn
, and
N.
Shahidzadeh
, “
Influence of surfactants on sodium chloride crystallization in confinement
,”
Langmuir
33
,
4260
(
2017
).
2.
X.
Wei
,
J.
Yang
,
Z.
Li
,
Y.
Su
, and
D.
Wang
, “
Comparison investigation of the effects of ionic surfactants on the crystallization behavior of calcium oxalate: From cationic to anionic surfactant
,”
Colloids Surf., A
401
,
107
(
2012
).
3.
M.
Sammalkorpi
,
M.
Karttunen
, and
M.
Haataja
, “
Ionic surfactant aggregates in saline solutions: Sodium dodecyl sulfate (SDS) in the presence of excess sodium chloride (NaCl) or calcium chloride (CaCl2)
,”
J. Phys. Chem. B
113
,
5863
(
2009
).
4.
J.
Desarnaud
,
H.
Derluyn
,
J.
Carmeliet
,
D.
Bonn
, and
N.
Shahidzadeh
, “
Metastability limit for the nucleation of NaCl crystals in confinement
,”
J. Phys. Chem. Lett.
5
,
890
(
2014
).
5.
N.
Saxena
,
T.
Naik
, and
S.
Paria
, “
Organization of SiO2 and TiO2 nanoparticles into fractal patterns on glass surface for the generation of superhydrophilicity
,”
J. Phys. Chem. C
121
,
2428
(
2017
).
6.
H.
Li
,
H.
Luo
,
Z.
Zhang
,
Y.
Li
,
B.
Xiong
,
C.
Qiao
,
X.
Cao
,
T.
Wang
,
Y.
He
, and
G.
Jing
, “
Direct observation of nanoparticle multiple-ring pattern formation during droplet evaporation with dark-field microscopy
,”
Phys. Chem. Chem. Phys.
18
,
13018
(
2016
).
7.
H. H.
Lee
,
S. C.
Fu
,
C. Y.
Tso
, and
C. Y. H.
Chao
, “
Study of residue patterns of aqueous nanofluid droplets with different particle sizes and concentrations on different substrates
,”
Int. J. Heat Mass Transfer
105
,
230
(
2017
).
8.
D.
Kaya
,
V. A.
Belyi
, and
M.
Muthukumar
, “
Pattern formation in drying droplets of polyelectrolyte and salt
,”
J. Chem. Phys.
133
,
114905
(
2010
).
9.
P.
Takhistov
and
H.-C.
Chang
, “
Complex stain morphologies
,”
Ind Eng. Chem. Res.
41
,
6256
(
2002
).
10.
B.
Shin
,
M.-W.
Moon
, and
H.-Y.
Kim
, “
Rings, igloos, and pebbles of salt formed by drying saline drops
,”
Langmuir
30
,
12837
(
2014
).
11.
X.
Zhong
,
J.
Ren
, and
F.
Duan
, “
Wettability effect on evaporation dynamics and crystalline patterns of sessile saline droplets
,”
J. Phys. Chem. B
121
,
7924
(
2017
).
12.
A. V.
Lyushnin
,
A. A.
Golovin
, and
L. M.
Pismen
, “
Fingering instability of thin evaporating liquid films
,”
Phys. Rev. E
65
,
021602
(
2002
).
13.
C.
Ohm
,
M.
Morys
,
F. R.
Forst
,
L.
Braun
,
A.
Eremin
,
C.
Serra
,
R.
Stannarius
, and
R.
Zentel
, “
Preparation of actuating fibres of oriented main-chain liquid crystalline elastomers by a wetspinning process
,”
Soft Matter
7
,
3730
(
2011
).
14.
D.
Baranov
,
A.
Fiore
,
M.
Van Huis
,
C.
Giannini
,
A.
Falqui
,
U.
Lafont
,
H.
Zandbergen
,
M.
Zanella
,
R.
Cingolani
, and
L.
Manna
, “
Assembly of colloidal semiconductor nanorods in solution by depletion attraction
,”
Nano Lett.
10
,
743
(
2010
).
15.
H.
Müller-Steinhagen
, “
Cooling-water fouling in heat exchangers
,”
Adv. Heat Transfer
33
,
415
(
1999
).
16.
D.
Vogel
,
A.
Simon
,
A. A.
Alturki
,
B.
Bilitewski
,
W. E.
Price
, and
L. D.
Nghiem
, “
Effects of fouling and scaling on the retention of trace organic contaminants by a nanofiltration membrane: The role of cake-enhanced concentration polarisation
,”
Sep. Purif. Technol.
73
,
256
(
2010
).
17.
M.
Schoenitz
,
L.
Grundemann
,
W.
Augustin
, and
S.
Scholl
, “
Fouling in microstructured devices: A review
,”
Chem. Commun.
51
,
8213
(
2015
).
18.
K.
Sefiane
, “
Patterns from drying drops
,”
Adv. Colloid Interface Sci.
206
,
372
(
2014
).
19.
H.
Hu
and
R. G.
Larson
, “
Marangoni effect reverses coffee-ring depositions
,”
Phys. Chem. B
110
,
7090
(
2006
).
20.
A.
Marin
,
S.
Karpitschka
,
D.
Noguera-Marín
,
M. A.
Cabrerizo-Vílchez
,
M.
Rossi
,
C. J.
Kähler
, and
M. A.
Rodríguez Valverde
, “
Solutal Marangoni flow as the cause of ring stains from drying salty colloidal drops
,”
Phys. Rev. Fluids
4
,
041601
(
2019
).
21.
L.
Bansal
,
A.
Miglani
, and
S.
Basu
, “
Morphological transitions and buckling characteristics in a nanoparticle-laden sessile droplet resting on a heated hydrophobic substrate
,”
Phys. Rev. E
93
,
042605
(
2016
).
22.
S.
Dash
,
A.
Chandramohan
,
J. A.
Weibel
, and
S. V.
Garimella
, “
Buoyancy-induced on-the-spot mixing in droplets evaporating on nonwetting surfaces
,”
Phys. Rev. E
90
,
062407
(
2014
).
23.
W.
Sempels
,
R.
De Dier
,
H.
Mizuno
,
J.
Hofkens
, and
J.
Vermant
, “
Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system
,”
Nat. Commun.
4
,
1757
(
2013
).
24.
A.
Sanyal
and
S.
Basu
, “
Evolution of internal flows in mechanically oscillating sessile droplets undergoing evaporation
,”
Chem. Eng. Sci.
163
,
179
(
2017
).
25.
A.
Rida
and
M. A. M.
Gijs
, “
Manipulation of self-assembled structures of magnetic beads for microfluidic mixing and assaying
,”
Anal. Chem.
76
,
6239
(
2004
).
26.
R.
Malinowski
,
G.
Volpe
,
I. P.
Parkin
, and
G.
Volpe
, “
Dynamic control of particle deposition in evaporating droplets by an external point source of vapor
,”
J. Phys. Chem. Lett.
9
,
659
(
2018
).
27.
S.
Kim
,
J.
Kim
, and
H.-Y.
Kim
, “
Dewetting of liquid film via vapour-mediated Marangoni effect
,”
J. Fluid Mech.
872
,
100
(
2019
).
28.
S.
Kim
,
J.
Kim
, and
H.-Y.
Kim
, “
Formation, growth, and saturation of dry holes in thick liquid films under vapor-mediated Marangoni effect
,”
Phys. Fluids
31
,
112105
(
2019
).
29.
P.
Kabi
,
R.
Pal
, and
S.
Basu
, “
Moses effect: Splitting a sessile droplet using a vapor-mediated Marangoni effect leading to designer surface patterns
,”
Langmuir
36
,
1279
(
2020
).
30.
N. J.
Cira
,
A.
Benusiglio
, and
M.
Prakash
, “
Vapour-mediated sensing and motility in two-component droplets
,”
Nature
519
,
446
(
2015
).
31.
D.
Liu
and
T.
Tran
, “
Vapor-induced attraction of floating droplets
,”
J. Phys. Chem. Lett.
9
,
4771
(
2018
).
32.
B.
Majhy
and
A. K.
Sen
, “
Evaporation-induced transport of a pure aqueous droplet by an aqueous mixture droplet
,”
Phys. Fluids
32
,
032003
(
2020
).
33.
B. R.
Bzdek
,
R. M.
Power
,
S. H.
Simpson
,
J. P.
Reid
, and
C. P.
Royall
, “
Precise, contactless measurements of the surface tension of picolitre aerosol droplets
,”
Chem. Sci.
7
,
274
(
2016
).
34.
G.
Jones
and
W. A.
Ray
, “
The surface tension of solutions of electrolytes as a function of the concentration. I. A differential method for measuring relative surface tension
,”
Am. Chem. Soc.
59
,
187
(
1937
).
35.
N.
Sghaier
,
M.
Prat
, and
S.
Ben Nasrallah
, “
On the influence of sodium chloride concentration on equilibrium contact angle
,”
Chem. Eng. J.
122
,
47
(
2006
).
36.
O.
Hegde
,
S.
Chakraborty
,
P.
Kabi
, and
S.
Basu
, “
Vapor mediated control of microscale flow in sessile droplets
,”
Phys. Fluids
30
,
122103
(
2018
).
37.
O.
Hegde
,
P.
Kabi
, and
S.
Basu
, “
Enhancement of mixing in a viscous, non-volatile droplet using a contact-free vapor-mediated interaction
,”
Phys. Chem. Chem. Phys.
22
,
014570
(
2020
).
38.
J.
Park
,
J.
Ryu
,
H. J.
Sung
, and
H.
Kim
, “
Control of solutal Marangoni-driven vortical flows and enhancement of mixing efficiency
,”
J. Colloid Interface Sci.
561
,
408
(
2019
).
39.
Y.
Zhao
, “
Moving contact line problem: Advances and perspectives
,”
Theor. Appl. Mech. Lett.
4
,
034002
(
2014
).
40.
A.
Giri
,
M.
Dutta Choudhury
,
T.
Dutta
, and
S.
Tarafdar
, “
Multifractal growth of crystalline NaCl aggregates in a gelatin medium
,”
Cryst. Growth Des.
13
,
341
(
2013
).
41.
M. D.
Choudhury
,
T.
Dutta
, and
S.
Tarafdar
, “
Pattern formation in droplets of starch gels containing NaCl dried on different surfaces
,”
Colloids Surf., A
432
,
110
(
2013
).
42.
N.
Shahidzadeh
,
M. F. L.
Schut
,
J.
Desarnaud
,
M.
Prat
, and
D.
Bonn
, “
Salt stains from evaporating droplets
,”
Sci. Rep.
5
,
10335
(
2015
).
43.
P.-G.
de Gennes
,
F.
Brochard-Wyart
,
D.
Quéré
,
P.-G.
de Gennes
,
F.
Brochard-Wyart
, and
D.
Quéré
,
Capillarity Wetting Phenom
(
Springer New York
,
2004
), pp.
33
67
.
44.
C. A.
Ward
and
K.
Sefiane
, “
Adsorption at the solidâĂŞliquid interface as the source of contact angle dependence on the curvature of the three-phase line
,”
Adv. Colloid Interface Sci.
161
,
171
(
2010
).
45.
F. C.
Wang
and
H. A.
Wu
, “
Molecular origin of contact line stick-slip motion during droplet evaporation
,”
Sci. Rep.
5
,
17521
(
2015
).
46.
M.
Ikegawa
and
H.
Azuma
, “
Droplet behaviors on substrates in thin-film formation using ink-jet printing
,”
JSME Int. J., Ser. B
47
,
490
(
2005
).
47.
S. A.
McBride
,
R.
Skye
, and
K. K.
Varanasi
, “
Differences between colloidal and crystalline evaporative deposits
,”
Langmuir
36
,
11732
(
2020
).
48.
V.
Vitagliano
and
P. A.
Lyons
, “
Diffusion coefficients for aqueous solutions of sodium chloride and barium chloride
,”
J. Am. Chem. Soc.
78
,
1549
(
1956
).
49.
See https://www.gsi-net.com/en/publications/gsi-chemical-database/single/259-ethanol.html for the information about diffusion coefficient of ethanol.
50.
J.
Park
,
J.
Ryu
,
H. J.
Sung
, and
H.
Kim
, “
Control of solutal Marangoni-driven vortical flows and enhancement of mixing efficiency
,”
J. Colloid Interface Sci.
561
,
408
(
2020
).
51.
V.
Jaiswal
,
A. R.
Harikrishnan
,
G.
Khurana
, and
P.
Dhar
, “
Ionic solubility and solutal advection governed augmented evaporation kinetics of salt solution pendant droplets
,”
Phys. Fluids
30
,
012113
(
2018
).
52.
A.
Chattopadhyay
,
R. K.
Dwivedi
,
A. R.
Harikrishnan
, and
P.
Dhar
, “
Ferro-advection aided evaporation kinetics of ferrofluid droplets in magnetic field ambience
,”
Phys. Fluids
32
,
082001
(
2020
).
53.
P. S.
Epstein
and
M. S.
Plesset
, “
On the stability of gas bubbles in liquid–gas solutions
,”
J. Chem. Phys.
18
,
1505
(
1950
).
54.
O.
Hegde
,
P.
Kabi
,
S.
Agarwal
, and
S.
Basu
, “
Controlling self-assembly and buckling in nano fluid droplets through vapour mediated interaction of adjacent droplets
,”
J. Colloid Interface Sci.
541
,
348
(
2019
).
55.
M. A.
Wilson
and
A.
Pohorille
, “
Adsorption and solvation of ethanol at the water liquid−vapor interface: A molecular dynamics study
,”
J. Phys. Chem. B
101
,
3130
(
1997
).
56.
P.
Davidovits
,
C. E.
Kolb
,
L. R.
Williams
,
J. T.
Jayne
, and
D. R.
Worsnop
, “
Mass accommodation and chemical reactions at gas−liquid interfaces
,”
Chem. Rev.
106
,
1323
(
2006
).
57.
K.
Sahu
,
V. F.
McNeill
, and
K. B.
Eisenthal
, “
Effect of salt on the adsorption affinity of an aromatic carbonyl molecule to the air−aqueous interface: Insight for aqueous environmental interfaces
,”
J. Phys. Chem. C
114
,
18258
(
2010
).
58.
A. A.
Nepomnyashchy
,
M. G.
Velarde
, and
P.
Colinet
,
Interfacial Phenomena and Convection
(
Chapman and Hall/CRC
,
2001
).
59.
G.
Vázquez
,
E.
Alvarez
, and
J. M.
Navaza
, “
Surface tension of alcohol water + water from 20 to 50.degree.C
,”
J. Chem. Eng. Data
40
,
611
(
1995
).
60.
W. D.
Ristenpart
,
P. G.
Kim
,
C.
Domingues
,
J.
Wan
, and
H. A.
Stone
, “
Influence of substrate conductivity on circulation reversal in evaporating drops
,”
Phys. Rev. Lett.
99
,
234502
(
2007
).
61.
Y.
Zhang
,
S.
Yang
, and
L.
Chen
, and
J. R. G.
Evans
, “
Shape changes during the drying of droplets of suspensions
,”
Langmuir
24
,
3752
(
2008
).
62.
L.
Bansal
,
P.
Seth
,
B.
Murugappan
, and
S.
Basu
, “
Suppression of coffee ring: (Particle) size matters
,”
Appl. Phys. Lett.
112
,
211605
(
2018
).

Supplementary Material

You do not currently have access to this content.