In this paper, we report a novel experimental study to examine the response of a soft capsule bathed in a liquid environment to sudden external impacts. Taking an egg yolk as an example, we found that the soft matter is not sensitive to translational impacts but is very sensitive to rotational, especially decelerating-rotational, impacts, during which the centrifugal force and the shape of the membrane together play a critical role in causing the deformation of the soft object. This finding, as the first study of its kind, reveals the fundamental physics behind the motion and deformation of a membrane-bound soft object, e.g., egg yolk, cells, and soft brain matter, in response to external impacts.

1.
K.
Tawse
, “
Cerbrospinal fluid-tissue interactions in the human brain
,”
J. Young Investig.
2008
,
1
(
2008
).
2.
S. O.
Linge
,
V.
Haughton
,
A. E.
Løvgren
,
K. A.
Mardal
, and
H. P.
Langtangen
, “
CSF flow dynamics at the craniovertebral junction studied with an idealized model of the subarachnoid space and computational flow analysis
,”
Am. J. Neuroradiol.
31
,
185
(
2010
).
3.
U.
Kertzscher
,
T.
Schneider
,
L.
Goubergrits
,
K.
Affeld
,
D.
Hänggi
, and
A.
Spuler
, “
In vitro study of cerebrospinal fluid dynamics in a shaken basal cistern after experimental subarachnoid hemorrhage
,”
PLoS One
7
,
e41677
(
2012
).
4.
I. V.
Pivkin
,
Z.
Peng
,
G. E.
Karniadakis
,
P. A.
Buffet
,
M.
Dao
, and
S.
Suresh
, “
Biomechanics of red blood cells in human spleen and consequences for physiology and disease
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
7804
(
2016
).
5.
J.
Kim
,
H.
Lee
, and
S.
Shin
, “
Advances in the measurement of red blood cell deformability: A brief review
,”
J. Cell. Biotechnol.
1
,
63
(
2015
).
6.
Centers for Disease Control and Prevention
, “
Sports-related recurrent brain injuries—United States
,”
Morb. Mortal. Wkly. Rep.
46
,
224
(
1997
).
7.
D. J.
Thurman
,
C. M.
Branche
, and
J. E.
Sniezek
, “
The epidemiology of sports-related traumatic brain injuries in the United States: Recent developments
,”
J. Head Trauma Rehabil.
13
,
1
(
1998
).
8.
D.
Barthès-biesel
,
A.
Diaz
, and
E.
Dhenin
, “
Effect of constitutive laws for two-dimensional membranes on flow-induced capsule deformation
,”
J. Fluid Mech.
460
,
211
(
2002
).
9.
E.
Lac
and
D.
Barthès-Biesel
, “
Deformation of a capsule in simple shear flow: Effect of membrane prestress
,”
Phys. Fluids
17
,
072105
(
2005
).
10.
K. S.
Chang
and
W. L.
Olbricht
, “
Experimental studies of the deformation of a synthetic capsule in extensional flow
,”
J. Fluid Mech.
250
,
587
(
1993
).
11.
G.
Pieper
,
H.
Rehage
, and
D.
Barthès-Biesel
, “
Deformation of a capsule in a spinning drop apparatus
,”
J. Colloid Interface Sci.
202
,
293
(
1998
).
12.
É.
Foessel
,
J.
Walter
,
A.-V.
Salsac
, and
D.
Barthès-biesel
, “
Influence of internal viscosity on the large deformation and buckling of a spherical capsule in a simple shear flow
,”
J. Fluid Mech.
672
,
477
(
2011
).
13.
A.
Rahmat
,
M.
Barigou
, and
A.
Alexiadis
, “
Deformation and rupture of compound cells under shear: A discrete multiphysics study
,”
Phys. Fluids
31
,
051903
(
2019
).
14.
M. R.
Hassan
,
J.
Zhang
, and
C.
Wang
, “
Deformation of a ferrofluid droplet in simple shear flows under uniform magnetic fields
,”
Phys. Fluids
30
,
092002
(
2018
).
15.
X.-Q.
Hu
,
X.-C.
Lei
,
A.-V.
Salsac
, and
D.
Barthès-Biesel
, “
Minuet motion of a pair of capsules interacting in simple shear flow
,”
J. Fluid Mech.
892
,
A19
(
2020
).
16.
H.
Ito
,
D.
Matsunaga
, and
Y.
Imai
, “
Shear viscosity of bimodal capsule suspensions in simple shear flow
,”
Phys. Rev. Fluids
4
,
113601
(
2019
).
17.
J.
Ma
,
L.
Xu
,
F.-B.
Tian
,
J.
Young
, and
J. C. S.
Lai
, “
Dynamic characteristics of a deformable capsule in a simple shear flow
,”
Phys. Rev. E
99
,
023101
(
2019
).
18.
T. W.
Secomb
,
B.
Styp-Rekowska
, and
A. R.
Pries
, “
Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels
,”
Ann. Biomed. Eng.
35
,
755
(
2007
).
19.
D. J.
Quinn
,
I.
Pivkin
,
S. Y.
Wong
,
K.-H.
Chiam
,
M.
Dao
,
G. E.
Karniadakis
, and
S.
Suresh
, “
Combined simulation and experimental study of large deformation of red blood cells in microfluidic systems
,”
Ann. Biomed. Eng.
39
,
1041
(
2011
).
20.
Z.
Che
,
Y. F.
Yap
, and
T.
Wang
, “
Flow structure of compound droplets moving in microchannels
,”
Phys. Fluids
30
,
012114
(
2018
).
21.
Z. Y.
Luo
and
B. F.
Bai
, “
Solute release from an elastic capsule flowing through a microfluidic channel constriction
,”
Phys. Fluids
31
,
121902
(
2019
).
22.
T.
Ye
and
L.
Peng
, “
Motion, deformation, and aggregation of multiple red blood cells in three-dimensional microvessel bifurcations
,”
Phys. Fluids
31
,
021903
(
2019
).
23.
E.
Häner
,
M.
Heil
, and
A.
Juel
, “
Deformation and sorting of capsules in a T-junction
,”
J. Fluid Mech.
885
,
A4
(
2020
).
24.
P.
Garstecki
,
M. J.
Fuerstman
,
H. A.
Stone
, and
G. M.
Whitesides
, “
Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up
,”
Lab Chip
6
,
437
(
2006
).
25.
J.
Tan
,
J. H.
Xu
,
S. W.
Li
, and
G. S.
Luo
, “
Drop dispenser in a cross-junction microfluidic device: Scaling and mechanism of break-up
,”
Chem. Eng. J.
136
,
306
(
2008
).
26.
D. R.
Link
,
S. L.
Anna
,
D. A.
Weitz
, and
H. A.
Stone
, “
Geometrically mediated breakup of drops in microfluidic devices
,”
Phys. Rev. Lett.
92
,
4
(
2004
).
27.
J. H.
Xu
,
S. W.
Li
,
J.
Tan
, and
G. S.
Luo
, “
Correlations of droplet formation in T-junction microfluidic devices: From squeezing to dripping
,”
Microfluid. Nanofluid.
5
,
711
(
2008
).
28.
L.
Rosenfeld
,
L.
Fan
,
Y.
Chen
,
R.
Swoboda
, and
S. K. Y.
Tang
, “
Break-up of droplets in a concentrated emulsion flowing through a narrow constriction
,”
Soft Matter
10
,
421
(
2014
).
29.
A.
Le Goff
,
B.
Kaoui
,
G.
Kurzawa
,
B.
Haszon
, and
A.-V.
Salsac
, “
Squeezing bio-capsules into a constriction: Deformation till break-up
,”
Soft Matter
13
,
7644
(
2017
).
30.
G.
Tryggvason
, “
The passage of a bubble or a drop past an obstruction in a channel
,”
Phys. Fluids
32
,
023303
(
2020
).
31.
X.
Wang
,
C.
Zhu
,
T.
Fu
, and
Y.
Ma
, “
Bubble breakup with permanent obstruction in an asymmetric microfluidic T-junction
,”
AIChE J.
61
,
1081
(
2015
).
32.
J.-H.
Kim
,
A.
Nizami
,
Y.
Hwangbo
,
B.
Jang
,
H.-J.
Lee
,
C.-S.
Woo
,
S.
Hyun
, and
T.-S.
Kim
, “
Tensile testing of ultra-thin films on water surface
,”
Nat. Commun.
4
,
2520
(
2013
).
33.
P.
Lee
and
M. A.
Rogers
, “
Effect of calcium source and exposure-time on basic caviar spherification using sodium alginate
,”
Int. J. Gastron. Food Sci.
1
,
96
(
2012
).
34.
B.
Langbehn
,
K.
Sander
,
Y.
Ovcharenko
,
C.
Peltz
,
A.
Clark
,
M.
Coreno
,
R.
Cucini
,
M.
Drabbels
,
P.
Finetti
,
M.
Di Fraia
,
L.
Giannessi
,
C.
Grazioli
,
D.
Iablonskyi
,
A. C.
LaForge
,
T.
Nishiyama
,
V.
Oliver Álvarez de Lara
,
P.
Piseri
,
O.
Plekan
,
K.
Ueda
,
J.
Zimmermann
,
K. C.
Prince
,
F.
Stienkemeier
,
C.
Callegari
,
T.
Fennel
,
D.
Rupp
, and
T.
Möller
, “
Three-dimensional shapes of spinning helium nanodroplets
,”
Phys. Rev. Lett.
121
,
255301
(
2018
).
35.
A.
Vorobev
and
A.
Boghi
, “
Phase-field modelling of a miscible system in spinning droplet tensiometer
,”
J. Colloid Interface Sci.
482
,
193
(
2016
).
36.
Y.
Jiang
,
C.
Zhao
,
T.
Cheng
, and
G.
Zhou
, “
Theoretical model in cylindrical coordinates to describe dynamic interfacial tension determination with spinning drop tensiometry
,”
Chem. Phys.
525
,
110409
(
2019
).
37.
K.
Ullmann
,
L.
Poggemann
,
H.
Nirschl
, and
G.
Leneweit
, “
Adsorption process for phospholipids of different chain lengths at a fluorocarbon/water interface studied by Du Noüy ring and spinning drop
,”
Colloid Polym. Sci.
298
,
407
(
2020
).

Supplementary Material

You do not currently have access to this content.