Flow over a circular cylinder placed inside a circular pipe is studied experimentally to understand the influence of Reynolds numbers (ReD = DUav/υ, where D is the diameter of the pipe, Uav is the average velocity in the pipe, and υ is the kinematic viscosity of the fluid) and blockage effects. In the present configuration, the influence of confinement, aspect ratio, upstream turbulence, shear, and end conditions coexists together. The wake dynamics of such a configuration are seldom reported in the literature. The Reynolds number range covered in the present study is ReD = 200–2.0 × 105. Four different flow regimes are defined based on the Reynolds number: steady, unsteady laminar, transition, and turbulent. In the unsteady laminar regime, the Strouhal number (St = fd/Uav, where f is the frequency of vortex shedding and d is the diameter of the bluff body) increases gradually. In the transition regime, a gradual fall in St is observed for all blockage ratios (d/D). In the turbulent regime, the upstream flow becomes fully turbulent, and the Strouhal number remains constant. The spanwise pressure distribution is influenced due to the blockage effects near the wall. The separation point moves 20° toward the rear stagnation point close to the wall compared to the center in the turbulent regime. A universal relation for the drag coefficient is proposed based on the pressure at the stagnation and separation points. The universal Strouhal number defined based on the wake width and velocity at the separation (Us) is shown to be independent of the blockage ratio. The results presented in the manuscript are relatively new in the domain of confined bluff body flows and will serve to enhance the general understanding of confined bluff body vortex dynamics.

1.
Bearman
,
P. W.
, “
Investigation of the flow behind a two-dimensional model with a blunt trailing edge and fitted with splitter plates
,”
J. Fluid Mech.
21
(
2
),
241
256
(
1965
).
2.
Durst
,
F.
and
Ünsal
,
B.
, “
Forced laminar-to-turbulent transition of pipe flows
,”
J. Fluid Mech.
560
,
449
464
(
2006
).
3.
Ford
,
C. L.
and
Winroth
,
P. M.
, “
On the scaling and topology of confined bluff-body flows
,”
J. Fluid Mech.
876
,
1018
1040
(
2019
).
4.
Ford
,
C. L.
,
Winroth
,
P. M.
, and
Alfredsson
,
P. H.
, “
Vortex-meter design: The influence of shedding-body geometry on shedding characteristics
,”
Flow Meas. Instrum.
59
,
88
102
(
2018
).
5et al..
Fugger
,
C. A.
,
Sykes
,
J.
,
Gallagher
,
T.
,
Rankin
,
B.
, and
Caswell
,
A. W.
, “
Corner vortex structures: Spanwise imaging of a confined, premixed bluff body stabilized flame
,” in
AIAA Scitech 2020 Forum
(
AIAA
,
2020
), p.
0435
.
6.
Gerrard
,
J. H.
, “
The mechanics of the formation region of vortices behind bluff bodies
,”
J. Fluid Mech.
25
(
2
),
401
413
(
1966
).
7.
Griffin
,
O. M.
, “
Vortex shedding from bluff bodies in a shear flow: A review
,”
J. Fluids Eng.
107
(
3
),
298
306
(
1985
).
8.
Griffin
,
O. M.
, “
A note on bluff body vortex formation
,”
J. Fluid Mech.
284
(
1
),
217
224
(
1995
).
9.
Griffin
,
O. M.
and
Ramberg
,
S. E.
, “
The vortex-street wakes of vibrating cylinders
,”
J. Fluid Mech.
66
(
3
),
553
576
(
1974
).
10.
Hwang
,
J.-Y.
,
Yang
,
K.-S.
, and
Sun
,
S.-H.
, “
Reduction of flow-induced forces on a circular cylinder using a detached splitter plate
,”
Phys. Fluids
15
(
8
),
2433
2436
(
2003
).
11.
Igarshi
,
T.
, “
Flow resistance and Strouhal number of a vortex shedder in a circular pipe
,”
JSME Int. J., Ser. B
42
,
586
595
(
1999
).
12.
Iungo
,
G. V.
and
Buresti
,
G.
, “
Experimental investigation on the aerodynamic loads and wake flow features of low aspect-ratio triangular prisms at different wind directions
,”
J. Fluids Struct.
25
(
7
),
1119
1135
(
2009
).
13.
Ji
,
J.
,
Gao
,
R.
,
Chen
,
W.
,
Liu
,
B.
, and
Chen
,
Q.
, “
Analysis of vortex flow in fluid domain with variable cross-section and design of a new vortex generator
,”
Int. Commun. Heat Mass Transfer
116
,
104695
(
2020
).
14.
Kanaris
,
N.
,
Grigoriadis
,
D.
, and
Kassinos
,
S.
, “
Three dimensional flow around a circular cylinder confined in a plane channel
,”
Phys. Fluids
23
,
064106
(
2011
).
15.
Luigino
,
Z.
and
Pedrizzetti
,
G.
, “
Flow about a circular cylinder between parallel walls
,”
J. Fluid Mech.
440
(
1
),
1
25
(
2001
).
16.
Maskell
,
E. C.
, “
A theory of the blockage effects on bluff bodies and stalled wings in a closed wind tunnel
,” Report No. ARC-R/M-3400,
Aeronautical Research Council
,
London, UK
,
1963
.
17.
Mullin
,
T.
, “
Experimental studies of transition to turbulence in a pipe
,”
Annu. Rev. Fluid Mech.
43
,
1
24
(
2011
).
18.
Nakagawa
,
S.
,
Nitta
,
K.
, and
Senda
,
M.
, “
An experimental study on unsteady turbulent near wake of a rectangular cylinder in channel flow
,”
Exp. Fluids
27
(
3
),
284
294
(
1999
).
19.
Norberg
,
C.
, “
Pressure distributions around a circular cylinder in cross-flow
,” in
Proceedings of the Conference on Bluff Body Wakes and Vortex-Induced Vibrations (BBVIV3)
(
2002a
), pp.
17
20
.
20.
Norberg
,
C.
, “
Pressure distributions around a circular cylinder in cross-flow
,” in
Proceedings of the Symposium on Bluff Body Wakes and Vortex-Induced Vibrations (BBVIV-3’02)
(
AIAA
,
2002b
), pp.
1
4
.
21.
Okamoto
,
S.
and
Sunabashiri
,
Y.
, “
Vortex shedding from a circular cylinder of finite length placed on a ground plane
,”
J. Fluids Eng.
114
(
4
),
512
521
(
1992
).
22.
Ordia
,
L.
,
Venugopal
,
A.
,
Agrawal
,
A.
, and
Prabhu
,
S. V.
, “
Vortex shedding characteristics of a cylinder with a parallel slit placed in a circular pipe
,”
J. Visualization
20
(
2
),
263
275
(
2017
).
23.
Parkinson
,
G. V.
and
Jandali
,
T.
, “
A wake source model for bluff body potential flow
,”
J. Fluid Mech.
40
(
3
),
577
594
(
1970
).
24.
Pattenden
,
R. J.
,
Turnock
,
S. R.
, and
Zhang
,
X.
, “
Measurements of the flow over a low-aspect-ratio cylinder mounted on a ground plane
,”
Exp. Fluids
39
(
1
),
10
21
(
2005
).
25.
Ramamurthy
,
A. S.
and
Lee
,
P. M.
, “
Wall effects on flow past bluff bodies
,”
J. Sound Vib.
31
(
4
),
443
451
(
1973
).
26.
Richter
,
A.
and
Naudascher
,
E.
, “
Fluctuating forces on a rigid circular cylinder in confined flow
,”
J. Fluid Mech.
78
(
3
),
561
576
(
1976
).
27.
Roshko
,
A.
, “
Experiments on the flow past a circular cylinder at very high Reynolds number
,”
J. Fluid Mech.
10
,
345
356
(
1961
).
28.
Sohankar
,
A.
,
Norberg
,
C.
, and
Davidson
,
L.
, “
Simulation of three-dimensional flow around a square cylinder at moderate Reynolds numbers
,”
Phys. Fluids
11
(
2
),
288
306
(
1999
).
29.
Szepessy
,
S.
and
Bearman
,
P. W.
, “
Aspect ratio and end plate effects on vortex shedding from a circular cylinder
,”
J. Fluid Mech.
234
(
1
),
191
217
(
1992
).
30.
Venugopal
,
A.
,
Agrawal
,
A.
, and
Prabhu
,
S. V.
, “
Review on vortex flowmeter—Designer perspective
,”
Sens. Actuators, A
170
(
1-2
),
8
23
(
2011
).
31.
Venugopal
,
A.
,
Agrawal
,
A.
, and
Prabhu
,
S. V.
, “
Note: A vortex cross-correlation flowmeter with enhanced turndown ratio
,”
Rev. Sci. Instrum.
85
(
6
),
066109
(
2014
).
32.
Venugopal
,
A.
,
Agrawal
,
A.
, and
Prabhu
,
S. V.
, “
Spanwise correlations in the wake of a circular cylinder and a trapezoid placed inside a circular pipe
,”
J. Fluids Struct.
54
,
536
547
(
2015
).
33.
Venugopal
,
A.
,
Agrawal
,
A.
, and
Prabhu
,
S. V.
, “
Investigations on bluff bodies as improved vortex shedders placed inside a circular pipe
,”
J. Fluids Eng.
139
(
4
),
041204
(
2017
).
34.
Venugopal
,
A.
,
Agrawal
,
A.
, and
Prabhu
,
S. V.
, “
Vortex dynamics of a trapezoidal bluff body placed inside a circular pipe
,”
J. Turbul.
19
(
1
),
1
24
(
2018
).
35.
West
,
G. S.
and
Apelt
,
C. J.
, “
The effects of tunnel blockage and aspect ratio on the mean flow past a circular cylinder with Reynolds numbers between 104 and 105
,”
J. Fluid Mech.
114
,
361
377
(
1982
).
36.
Williamson
,
C. H. K.
, “
Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers
,”
J. Fluid Mech.
206
,
579
(
1989
).
37.
Williamson
,
C. H. K.
, “
Vortex dynamics in the cylinder wake
,”
Annu. Rev. Fluid Mech.
28
(
1
),
477
539
(
1996
).
38.
Yeung
,
W. W. H.
, “
On pressure invariance, wake width and drag prediction of a bluff body in confined flow
,”
J. Fluid Mech.
622
,
321
(
2009
).
39.
Zdravkovich
,
M. M.
,
Flaherty
,
A. J.
,
Pahle
,
M. G.
, and
Skelhorne
,
I. A.
, “
Some aerodynamic aspects of coin-like cylinders
,”
J. Fluid Mech.
360
,
73
(
1998
).
40.
Zhang
,
W.
,
Wang
,
J.
,
Lin
,
W.
,
Guo
,
S.
,
Zhang
,
M.
,
Li
,
G.
,
Ye
,
J.
, and
Huang
,
Z.
, “
Measurements on flame structure of bluff body and swirl stabilized premixed flames close to blow-off
,”
Exp. Therm. Fluid Sci.
104
,
15
25
(
2019
).
You do not currently have access to this content.