Wingtip vortices are an important phenomenon in fluid dynamics due to their complex and negative impacts. Despite numerous studies, the current understanding of the inner vortex is very limited; thus, a basis for the design of effective wingtip geometry and vortex manipulation is narrow. This work examines the structure of the trailing vortex shed from a swept-tapered wing, analogous to a commercial aircraft topology. Stereoscopic particle imaging velocimetry has been utilized to compare the vortex structure and development through several angles of attack at various downstream stations for a fixed Reynolds number (Re = 1.5 × 106). After correcting for vortex meander through helicity-based spatial localization of the vortex core, relationships between the vortex core velocity/vorticity fields, core shape, and turbulent properties have been examined. Subsequently, the vortex is found to exhibit a layered structure with slow linear rates of dissipation indicative of laminar diffusion mechanisms, despite being a turbulent vortex. The turbulent kinetic energy distribution in the vortex signals that relaminarization of the inner core occurs. Consideration of the streamline curvature around the core, via examination of the local Richardson number, indicated that a laminar core structure had formed within which large-scale turbulent eddies could not contribute to the turbulent diffusion of vorticity away from the core. The normalized circulation within the vortex core has been shown to exhibit self-similar behavior typical of the fully developed axisymmetric vortices.

1.
V. V.
Vyshinsky
, “
Flight safety, aircraft vortex wake and airport operation capacity
,”
Air Space Europe
3
,
206
208
(
2001
).
2.
K.
Hünecke
, “
Wake vortex control—A challenge for large transport aircraft
,”
Air Space Europe: Air Transp. Saf.
3
,
209
213
(
2001
).
3.
J. N.
Hallock
and
F.
Holzäpfel
, “
A review of recent wake vortex research for increasing airport capacity
,”
Prog. Aerosp. Sci.
98
,
27
36
(
2018
).
4.
Aircraft Accident Report No. NTSB-AAR-81-1, United States National Transport Safety Board,
1981
.
5.
Wake Turbulence Encounter—Collision with Terrain, Transport Safety Board of Canada Aviation Investigation Report No. A09P0187,
2009
.
6.
T.
Gerz
,
F.
Holzäpfel
, and
D.
Darracq
, “
Commercial aircraft wake vortices
,”
Prog. Aerosp. Sci.
38
,
181
208
(
2002
).
7.
T.
Gerz
,
F.
Holzäpfel
,
W.
Bryant
,
F.
Köpp
,
M.
Frech
,
A.
Tafferner
, and
G.
Winckelmans
, “
Research towards a wake-vortex advisory system for optimal aircraft spacing
,”
C. R. Phys.
6
(
4-5
),
501
523
(
2005
).
8.
Flightpath 2050 Europe’s Vision for Aviation, European Commission Report of the High Level Group on Aviation Research,
2011
.
9.
Airbus, Airbus Global Market Forecast: Cities, Airports, and Aircraft 2019–2037, Blagnac Cedex, France,
2019
.
10.
J.
Hemmerdinger
, Out With the Old Jets? How Virus Led Fleet Descisions Will Impact OEMs, Aftermarket Providers, Flight Global,
2020
.
11.
M.
Morrison
, Transatlantic Traffic Keeps Biggin Hill’s Head Above Water, Flight Global,
2020
.
12.
United States Aviation Greenhouse Gas Emissions Reduction Plan,
2015
.
13.
A.
Allen
and
C.
Breitsamter
, “
Transport aircraft wake influenced by a large winglet and winglet flaps
,”
J. Aircr.
45
(
2
),
686
699
(
2008
).
14.
E. R.
Hoffmann
and
P. N.
Joubert
, “
Turbulent line vortices
,”
J. Fluid Mech.
16
(
3
),
395
411
(
1963
).
15.
G. K.
Batchelor
, “
Axial flow in trailing line vortices
,”
J. Fluid Mech.
20
(
4
),
645
658
(
1964
).
16.
W. R. C.
Phillips
, “
The turbulent trailing vortex during roll-up
,”
J. Fluid Mech.
105
,
451
467
(
1981
).
17.
S. I.
Green
and
A. J.
Acosta
, “
Unsteady flow in trailing vortices
,”
J. Fluid Mech.
227
,
107
134
(
1991
).
18.
G. W.
Brune
, “
Quantitative low-speed wake surveys
,”
J. Aircr.
31
(
2
),
249
255
(
1994
).
19.
K.
Kusunose
, “
Development of a universal wake survey data analysis code
,” in
15th Applied Aerodynamics Conference
(
AIAA
,
1997
), pp.
617
626
.
20.
P. R.
Spalart
, “
Airplane trailing vortices
,”
Annu. Rev. Fluid Mech.
30
,
107
138
(
1998
).
21.
L.
Jiang
,
J.
Cai
, and
C.
Liu
, “
Large eddy simulation of wing tip vortex in the near field
,” Technical Report No. 2007-13,
University of Texas
,
Arlington
,
2007
.
22.
P.
Anusonti-Inthra
and
M.
Floros
, “
Coupled CFD and particle vortex transport method: Wing performance and wake validations
,” AIAA Paper No. 2008-4177,
2008
.
23.
D. M.
Birch
, “
Self-Similarity of trailing vortices
,”
Phys. Fluids
24
(
2
),
025105
(
2012
).
24.
M. J.
Churchfield
and
G. A.
Blaisdell
, “
Reynolds stress relaxation turbulence modeling applied to a wingtip vortex flow
,”
AIAA J.
51
(
11
),
2643
2655
(
2013
).
25.
J.-E.
Lombard
,
D.
Moxey
,
S. J.
Sherwin
,
J. F. A.
Hoessler
,
S.
Dhandapani
, and
M. J.
Taylor
, “
Implicit large-eddy simulation of a wingtip vortex
,”
AIAA J.
54
(
2
),
506
518
(
2016
).
26.
R.
Paoli
and
H.
Moet
, “
Temporal large-eddy simulations of the near-field of an aircraft wake
,”
Open J. Fluid Dyn.
08
,
161
180
(
2018
).
27.
P.
Ranjan
and
P. J.
Ansell
, “
Computational analysis of vortex wakes without near-field rollup characteristics
,”
J. Aircr.
55
(
5
),
2008
2021
(
2018
).
28.
A. C.
Devoria
and
K.
Mohseni
, “
Vortex sheet roll-up revisited
,”
J. Fluid Mech.
855
,
299
321
(
2018
).
29.
P.
Ranjan
,
P. J.
Ansell
, and
K. A.
James
, “
Optimal hyperelliptic cambered span configurations for minimum drag
,”
J. Aircr.
56
(
1
),
356
368
(
2019
).
30.
A.
Asnaghi
,
U.
Svennberg
, and
R. E.
Bensow
, “
Large eddy simulations of cavitating tip vortex flows
,”
Ocean Eng.
195
,
106703
(
2020
).
31.
A.
Asnaghi
,
U.
Svennberg
,
R.
Gustafsson
, and
R.
Bensow
, “
Investigations of tip vortex mitigation by using roughness
,”
Phys. Fluids
32
,
065111
(
2020
).
32.
T. B.
Francis
and
J.
Katz
, “
Observations on the development of a tip vortex on a rectangular hydrofoil
,”
J. Fluids Eng.
110
(
2
),
208
215
(
1988
).
33.
K. W.
McAlister
and
R. K.
Takahashi
, “
NACA 0015 wing pressure and trailing vortex measurements
,” NASA Technical Paper No. 3151,
1991
.
34.
Y.
Zheng
and
B. R.
Ramaprian
, “
An experimental study of wing tip vortex in the near wake of a rectangular wing
,” U.S. Army Research Office, Report No. MME-TF-93-1,
1993
, p.
18
.
35.
W. J.
Devenport
,
M. C.
Rife
,
S. I.
Liapis
, and
G. J.
Follin
, “
The structure and development of a wing-tip vortex
,”
J. Fluid Mech.
312
,
67
106
(
1996
).
36.
J. S.
Chow
,
G. G.
Zilliac
, and
P.
Bradshaw
, “
Mean and turbulence measurements in the near field of a wingtip vortex
,”
AIAA J.
35
(
10
),
1561
1567
(
1997
).
37.
B. R.
Ramaprian
and
Y.
Zheng
, “
Measurements in rollup region of the tip vortex from a rectangular wing
,”
AIAA J.
35
(
12
),
1837
1843
(
1997
).
38.
D.
Birch
,
T.
Lee
,
F.
Mokhtarian
, and
F.
Kafyeke
, “
Structure and induced drag of a tip vortex
,”
J. Aircr.
41
(
5
),
1138
1145
(
2004
).
39.
H. J.
Zhang
,
Y.
Zhou
, and
J. H.
Whitelaw
, “
Near-field wing-tip vortices and exponential vortex solution
,”
J. Aircr.
43
(
2
),
445
449
(
2006
).
40.
M.
Giuni
and
R. B.
Green
, “
Vortex formation on squared and rounded tip
,”
Aerosp. Sci. Technol.
29
(
1
),
191
199
(
2013
).
41.
M. O.
Memon
,
K.
Wabick
, and
A.
Altman
, “
Wing tip vortices from an exergy-based perspective
,”
J. Aircr.
52
(
4
),
1267
1276
(
2015
).
42.
S.
Gunasekaran
and
A.
Altman
, “
Is there a relationship between the wingtip vortex and the shear layer?
,” AIAA Paper No. 2016-1068,
2016
.
43.
D. J.
Moreau
and
C. J.
Doolan
, “
An experimental study of airfoil tip vortex formation noise
,” in
Proceedings of Acoustics 2016
,
Brisbane, Australia
,
2016
.
44.
G. V.
Iungo
, “
Wandering of a wing-tip vortex: Rapid scanning and correction of fixed-point measurements
,”
J. Aircr.
54
(
5
),
1779
1790
(
2017
).
45.
M. O.
Memon
, “
Wingtip vortices and free shear layer interaction in the vicinity of maximum lift to drag ratio lift condition
,” Ph.D. thesis,
University of Dayton
,
2017
.
46.
H. C.
Ghimire
and
S. C. C.
Bailey
, “
An experimental investigation of wing-tip vortex decay in turbulence
,”
Phys. Fluids
29
(
3
),
037108
(
2017
).
47.
Z.
El-Ramly
,
W. J.
Rainbird
, and
D. G.
Earl
, “
Wind tunnel measurements of rolling moment in a swept-wing vortex wake
,”
J. Aircr.
13
(
12
),
962
967
(
1976
).
48.
K. L.
Orloff
and
D. L.
Ciffone
, “
Vortex measurements behind a swept wing transport model
,”
J. Aircr.
11
(
6
),
362
364
(
1974
).
49.
E.
Ozger
,
I.
Schell
, and
D.
Jacob
, “
On the structure and attenuation of an aircraft wake
,”
J. Aircr.
38
(
5
),
878
887
(
2001
).
50.
P.
Gerontakos
and
T.
Lee
, “
Near-field tip vortex behind a swept wing model
,”
Exp. Fluids
40
,
141
155
(
2006
).
51.
C.
Breitsamter
, “
Wake vortex characteristics of transport aircraft
,”
Prog. Aerosp. Sci.
47
,
89
134
(
2011
).
52.
O. A.
Elsayed
,
W.
Asrar
,
A. A.
Omar
, and
K.
Kwon
, “
Evolution of NACA23012 wake vortices structure using PIV
,”
J. Aerosp. Eng.
25
,
10
20
(
2012
).
53.
G. E.
Wroblewski
and
P. J.
Ansell
, “
Prediction and experimental evaluation of planar wing spanloads for minimum drag
,”
J. Aircr.
54
(
5
),
1664
1674
(
2017
).
54.
S.
Zhang
,
A. J.
Jaworski
,
S. C.
McParlin
, and
J. T.
Turner
, “
Experimental investigation of the flow structures over a 40° swept wing
,”
Aeronaut. J.
123
(
1259
),
39
55
(
2019
).
55.
S. N.
Skinner
and
H.
Zare-Behtash
, “
Study of a C-wing configuration for passive drag and load alleviation
,”
J. Fluids Struct.
78
,
175
196
(
2018
).
56.
S. N.
Skinner
and
H.
Zare-Behtash
, “
Semi-span wind tunnel testing without conventional peniche
,”
Exp. Fluids
58
,
163
(
2017
).
57.
S. N.
Skinner
, “
Study of a C-wing configuration for passive drag and load alleviation
,” Ph.D. thesis,
University of Glasgow
,
2018
.
58.
LaVision, DaVis 8 Software, Product Manual, Germany,
2012
.
59.
M.
Raffel
,
C. E.
Willert
,
S. T.
Wereley
, and
J.
Kompenhans
,
Particle Image Velocimetry: A Practical Guide
, 2nd ed. (
Springer
,
2007
).
60.
J. M. M.
Sousa
and
J. C. F.
Pereira
, “
Rollup region of a turbulent trailing vortex issued from a blade with flow separation
,”
Exp. Therm. Fluid Sci.
20
,
150
161
(
2000
).
61.
M.
Ramasamy
,
R.
Paetzel
, and
M. J.
Bhagwat
, “
Aperiodicity correction of rotor wip vortex measurements
,” in
American Helicopter Society 67th Annual Forum
,
Virginia Beach, VA
,
2011
.
62.
M.
Ramasamy
,
B.
Johnson
,
T.
Huismann
, and
J. G.
Leishman
, “
Digital particle image velocimetry measurements of tip vortex characteristics using an improved aperiodicity correction
,”
J. Am. Helicopter Soc.
54
(
1
),
012004
(
2009
).
63.
M.
Ramasamy
,
B.
Johnson
,
T.
Huismann
, and
J. G.
Leishman
, “
Procedures for measuring the turbulence characteristics of rotor blade tip vortices
,”
J. Am. Helicopter Soc.
54
,
022006
(
2009
).
64.
S. J.
Beresh
,
J. F.
Henfling
, and
R. W.
Spillers
, “
Meander of a fin trailing vortex and the origin of its turbulence
,”
Exp. Fluids
49
,
599
611
(
2010
).
65.
B. G.
van der Wall
and
H.
Richard
, “
Analysis methodology for 3C-PIV data of rotary wing vortices
,”
Exp. Fluids
40
,
798
812
(
2006
).
66.
F.
Albano
,
F.
De Gregorio
, and
A.
Ragni
, “
Trailing vortex detection and quantitative evaluation of vortex characteristics by PIV technique
,” in
20th International Congress on Instrumentation in Aerospace Simulation Facilities
(
IEEE
,
2003
), Vol. 3, pp.
31
43
.
67.
P.
Welch
, “
The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms
,”
IEEE Trans. Audio Electroacoust.
15
(
2
),
70
73
(
1967
).
68.
M.
Engel
, “
A wind tunnel investgation of a wing-tip trailing vortex
,” Ph.D. thesis,
Virginia Polytechnic Institute
,
1995
.
69.
S. C. C.
Bailey
,
S.
Tavoularis
, and
B. H. K.
Lee
, “
Effects of free-stream turbulence on wing-tip vortex formation and near field
,”
J. Aircr.
43
(
5
),
1282
1291
(
2006
).
70.
P. I.
Singh
and
M. S.
Uberoi
, “
Experiments on vortex stability
,”
Phys. Fluids
19
(
12
),
1858
1863
(
1976
).
71.
W. R. C.
Phillips
and
J. A. H.
Graham
, “
Reynolds-stress measurements in a turbulent trailing vortex
,”
J. Fluid Mech.
147
,
353
371
(
1984
).
72.
D. S.
Dosanjh
,
E. P.
Gasparek
, and
S.
Eskinazi
, “
Decay of a viscous trailing vortex
,”
Aeronaut. J.
13
(
2
),
167
188
(
1962
).
73.
K.
Yang
and
S.
Xu
, “
Wing tip vortex structure behind an airfoil with flaps at the tip
,”
Sci. China: Phys., Mech. Astron.
54
(
4
),
743
747
(
2011
).
74.
R.
Narasimha
and
K. R.
Sreenivasan
, “
Relaminarization of fluid flows
,”
Adv. Appl. Mech.
19
,
221
309
(
1979
).
75.
P. B.
Martin
and
J. G.
Leishman
, “
Trailing vortex measurements in the wake of a hovering rotor blade with various tip shapes
,” in
58th Annual Forum of the AHS International, Montreal, Canada, 11-13 June 2002
(
American Helicopter Society
,
2003
), pp.
2058
2080
.
76.
P. B.
Martin
,
G. J.
Pugliese
, and
J. G.
Leishman
, “
High resolution trailing vortex measurements in the wake of a hovering rotor
,”
J. Am. Helicopter Soc.
48
(
1
),
39
52
(
2003
).
77.
O.
Zeman
, “
The persistence of trailing vortices: A modeling study
,”
Phys. Fluids
7
(
1
),
135
143
(
1995
).
78.
A. J.
Cotel
and
R. E.
Breidenthal
, “
Turbulence inside a vortex
,”
Phys. Fluids
11
(
10
),
3026
3029
(
1999
).
79.
M.
Giuni
, “
Formation and early development of wingtip vortices
,” Ph.D. thesis,
University of Glasgow
,
2013
.
80.
P.
Bradshaw
, “
The analogy between streamline curvature and buoyancy in turbulent shear flow
,”
J. Fluid Mech.
36
(
1
),
177
191
(
1969
).
81.
A. J.
Cotel
, “
Turbulence inside a vortex: Take two
,”
Phys. Fluids
14
(
8
),
2933
2934
(
2002
).
82.
A. J.
Cotel
,
J. A.
Gjestvang
,
N. N.
Ramkhelawan
, and
R. E.
Breidenthal
, “
Laboratory experiments of a jet impinging on a stratified interface
,”
Exp. Fluids
23
,
155
160
(
1997
).
83.
M. J.
Churchfield
and
G. A.
Blaisdell
, “
Numerical simulations of a wingtip vortex in the near field
,”
J. Aircr.
46
(
1
),
230
243
(
2009
).
84.
C.
Breitsamter
and
A.
Allen
, “
Transport aircraft wake influenced by oscillating winglet flaps
,”
J. Aircr.
46
(
1
),
175
188
(
2009
).
You do not currently have access to this content.