High-pressure turbine blades are subject to large thermomechanical loads that may threaten their mechanical integrity. The prediction of the heat transfer on the blade surface, crucial to ensure its durability, thus requires an accurate description of the flow physics around the blade to be reliable. In an effort to better qualify the use of computational fluid dynamics in this design context as well as the need for an improved understanding of the flow physics, this paper investigates a transonic highly loaded linear turbine blade cascade that has been found difficult to predict in the literature using large-eddy simulations. Indeed, the configuration results in shocks and acoustic waves on the suction side of the blade, features that are commonly encountered in high-pressure turbines. Turbulent spots are observed on the suction-side boundary layer with an inlet turbulence intensity of 6%. The turbulent spots are shown to have a complex and highly unsteady effect on the shock/boundary-layer interaction, disrupting flow detachment and creating laminar spots downstream of the shock. To address these transient flow phenomena, conditional averages based on the intermittency level are introduced to show that accurate heat transfer predictions require an accurate prediction of the rate of turbulent-spot production. The analysis then focuses on the effect of intermittency on the turbulent kinetic energy exchanges in the near-wall region as the turbulent kinetic energy balance must be addressed in Reynolds-averaged Navier–Stokes models.

1.
T.
Arts
,
M. L.
De Rouvroit
, and
A. W.
Rutherford
,
Aero-Thermal Investigation of a Highly Loaded Transonic Linear Turbine Guide Vane Cascade
(
von Karman Institute for Fluid Dynamics
,
1990
).
2.
H.
Babinsky
and
J. K.
Harvey
,
Shock Wave-Boundary-Layer Interactions
(
Cambridge University Press
,
New York
,
2011
).
3.
R.
Bhaskaran
and
S. K.
Lele
, “
Large eddy simulation of free-stream turbulence effects on heat transfer to a high-pressure turbine cascade
,”
J. Turbul.
11
,
N6
(
2010
).
4.
B.
Cantwell
,
D.
Coles
, and
P.
Dimotakis
, “
Structure and entrainment in the plane of symmetry of a turbulent spot
,”
J. Fluid Mech.
87
(
4
),
641
672
(
1978
).
5.
I. B.
Celik
,
Z. N.
Cehreli
, and
I.
Yavuz
, “
Index of resolution quality for large eddy simulations
,”
J. Fluids Eng.
127
(
5
),
949
958
(
2005
).
6.
D. R.
Chapman
,
D. M.
Kuehn
, and
H. K.
Larson
, “
Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition
,” NACA Report No. 1356,
1958
.
7.
R. V.
Chima
, “
Application of the k-omega turbulence model to quasi-three-dimensional turbomachinary flows
,”
J. Propul. Power
12
(
6
),
1176
1179
(
1996
).
8.
J. P.
Clark
,
T. V.
Jones
, and
J. E.
LaGraff
, “
On the propagation of naturally-occurring turbulent spots
,”
J. Eng. Math.
28
(
1
),
1
19
(
1994
).
9.
O.
Colin
and
M.
Rudgyard
, “
Development of high-order Taylor–Galerkin schemes for LES
,”
J. Comput. Phys.
162
(
2
),
338
371
(
2000
).
10.
E. C.
Morata
,
N.
Gourdain
,
F.
Duchaine
, and
L. Y. M.
Gicquel
, “
Effects of free-stream turbulence on high pressure turbine blade heat transfer predicted by structured and unstructured LES
,”
Int. J. Heat Mass Transfer
55
(
21-22
),
5754
5768
(
2012
).
11.
J. M.
Délery
, “
Shock wave/turbulent boundary layer interaction and its control
,”
Prog. Aerosp. Sci.
22
(
4
),
209
280
(
1985
).
12.
D.
Dupuy
,
A.
Toutant
, and
F.
Bataille
, “
Equations of energy exchanges in variable density turbulent flows
,”
Phys. Lett. A
382
(
5
),
327
333
(
2018
).
13.
D.
Dupuy
,
A.
Toutant
, and
F.
Bataille
, “
Turbulence kinetic energy exchanges in flows with highly variable fluid properties
,”
J. Fluid Mech.
834
,
5
54
(
2018
).
14.
D.
Dupuy
,
A.
Toutant
, and
F.
Bataille
, “
Effect of the Reynolds number on turbulence kinetic energy exchanges in flows with highly variable fluid properties
,”
Phys. Fluids
31
(
1
),
015104
(
2019
).
15.
H. W.
Emmons
, “
The laminar-turbulent transition in a boundary layer-Part I
,”
J. Aeronaut. Sci.
18
(
7
),
490
498
(
1951
).
16.
A.
Favre
, “
The equations of compressible turbulent gases
,” Technical Report No. AD0622097, DTIC Document,
1965
.
17.
R.
Fransen
,
E.
Collado Morata
,
F.
Duchaine
,
N.
Gourdain
,
L.
Gicquel
,
L.
Vial
, and
G.
Bonneau
, “
Comparison of RANS and LES in high pressure turbines
,” in
3Me Colloque INCA
,
ONERA, Toulouse, France
,
November 17–18, 2011
.
18.
M.
Gad-El-Hak
,
R. F.
Blackwelderf
, and
J. J.
Riley
, “
On the growth of turbulent regions in laminar boundary layers
,”
J. Fluid Mech.
110
,
73
95
(
1981
).
19.
A.
Gehrer
and
H.
Jericha
, “
External heat transfer predictions in a highly loaded transonic linear turbine guide vane cascade using an upwind biased Navier–Stokes solver
,”
J. Turbomach.
121
(
3
),
525
531
(
1999
).
20.
B. J.
Geurts
and
J.
Fröhlich
, “
A framework for predicting accuracy limitations in large-eddy simulation
,”
Phys. Fluids
14
(
6
),
L41
L44
(
2002
).
21.
N.
Gourdain
,
L. Y. M.
Gicquel
, and
E.
Collado Morata
, “
RANS and LES for the heat transfer prediction in turbine guide vane
,”
J. Propul. Power
28
(
2
),
423
433
(
2012
).
22.
V.
Granet
,
O.
Vermorel
,
T.
Léonard
,
L.
Gicquel
, and
T.
Poinsot
, “
Comparison of nonreflecting outlet boundary conditions for compressible solvers on unstructured grids
,”
AIAA J.
48
(
10
),
2348
2364
(
2010
).
23.
F.
Guiho
,
F.
Alizard
, and
J.-C.
Robinet
, “
Instabilities in oblique shock wave/laminar boundary-layer interactions
,”
J. Fluid Mech.
789
,
1
35
(
2016
).
24.
R. J.
Hakkinen
,
I.
Greber
,
L.
Trilling
, and
S. S.
Abarbanel
, “
The interaction of an oblique shock wave with a laminar boundary layer
,” NASA Memo 2-18-59W,
1959
, p.
1356
.
25.
N.
Hildebrand
,
A.
Dwivedi
,
J. W.
Nichols
,
M. R.
Jovanović
, and
G. V.
Candler
, “
Simulation and stability analysis of oblique shock-wave/boundary-layer interactions at Mach 5.92
,”
Phys. Rev. Fluids
3
(
1
),
013906
(
2018
).
26.
J.-C.
Hoarau
,
P.
Cinnella
, and
X.
Gloerfelt
, “
Large eddy simulation of dense gas flow around a turbine cascade
,” in
AIAA Aviation 2019 Forum
(
AIAA
,
2019
), p.
2843
.
27.
P. G.
Huang
,
G. N.
Coleman
, and
P.
Bradshaw
, “
Compressible turbulent channel flows: DNS results and modelling
,”
J. Fluid Mech.
305
,
185
218
(
1995
).
28.
R. G.
Jacobs
and
P. A.
Durbin
, “
Simulations of bypass transition
,”
J. Fluid Mech.
428
,
185
212
(
2001
).
29.
S.
Jee
,
J.
Joo
, and
G.
Medic
, “
Large-eddy simulation of a high-pressure turbine vane with inlet turbulence
,” in
ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, V02DT44A019
(
American Society of Mechanical Engineers
,
2016
).
30.
L. E.
Jones
,
R. D.
Sandberg
, and
N. D.
Sandham
, “
Stability and receptivity characteristics of a laminar separation bubble on an aerofoil
,”
J. Fluid Mech.
648
,
257
296
(
2010
).
31.
Y.
Katz
,
A.
Seifert
, and
I.
Wygnanski
, “
On the evolution of the turbulent spot in a laminar boundary layer with a favourable pressure gradient
,”
J. Fluid Mech.
221
,
1
22
(
1990
).
32.
R. H.
Kraichnan
, “
Diffusion by a random velocity field
,”
Phys. Fluids
13
(
1
),
22
31
(
1970
).
33.
L.
Krishnan
and
N. D.
Sandham
, “
Effect of Mach number on the structure of turbulent spots
,”
J. Fluid Mech.
566
,
225
234
(
2006
).
34.
L.
Krishnan
and
N. D.
Sandham
, “
On the merging of turbulent spots in a supersonic boundary-layer flow
,”
Int. J. Heat Fluid Flow
27
(
4
),
542
550
(
2006
).
35.
L.
Krishnan
and
N. D.
Sandham
, “
Strong interaction of a turbulent spot with a shock-induced separation bubble
,”
Phys. Fluids
19
(
1
),
016102
(
2007
).
36.
G. M.
Laskowski
,
J.
Kopriva
,
V.
Michelassi
,
S.
Shankaran
,
U.
Paliath
,
R.
Bhaskaran
,
Q.
Wang
,
C.
Talnikar
,
Z. J.
Wang
, and
F.
Jia
, “
Future directions of high fidelity CFD for aerothermal turbomachinery analysis and design
,” in
46th AIAA Fluid Dynamics Conference
(
AIAA
,
2016
), p.
3322
.
37.
D.
Lin
,
X.
Yuan
, and
X.
Su
, “
Local entropy generation in compressible flow through a high pressure turbine with delayed detached eddy simulation
,”
Entropy
19
(
1
),
29
(
2017
).
38.
D.
Lin
,
X.
Su
, and
X.
Yuan
, “
The development and mechanisms of the high pressure turbine vane wake vortex
,”
J. Eng. Gas Turbines Power
140
(
9
),
092601
(
2018
).
39.
Y.
Liu
, “
Aerodynamics and heat transfer predictions in a highly loaded turbine blade
,”
Int. J. Heat Fluid Flow
28
(
5
),
932
937
(
2007
).
40.
R. E.
Mayle
, “
The 1991 IGTI scholar lecture: The role of laminar-turbulent transition in gas turbine engines
,”
J. Turbomach.
113
(
4
),
509
536
(
1991
).
41.
V.
Michelassi
,
F.
Martelli
,
R.
Dénos
,
T.
Arts
, and
C. H.
Sieverding
, “
Unsteady heat transfer in stator-rotor interaction by two equation turbulence model
,” in
ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition, V001T01A058
(
American Society of Mechanical Engineers
,
1998
).
42.
Z.
Murphree
,
K.
Yuceil
,
N.
Clemens
, and
D.
Dolling
, “
Experimental studies of transitional boundary layer shock wave interactions
,” in
45th AIAA Aerospace Sciences Meeting and Exhibit
(
AIAA
,
2006
), p.
1139
.
43.
R.
Narasimha
, “
The laminar-turbulent transition zone in the boundary layer
,”
Prog. Aerosp. Sci.
22
(
1
),
29
80
(
1985
).
44.
F.
Nicoud
and
F.
Ducros
, “
Subgrid-scale stress modelling based on the square of the velocity gradient tensor
,”
Flow, Turbul. Combust.
62
(
3
),
183
200
(
1999
).
45.
K. P.
Nolan
and
T. A.
Zaki
, “
Conditional sampling of transitional boundary layers in pressure gradients
,”
J. Fluid Mech.
728
,
306
339
(
2013
).
46.
N.
Odier
,
M.
Sanjosé
,
L.
Gicquel
,
T.
Poinsot
,
S.
Moreau
, and
F.
Duchaine
, “
A characteristic inlet boundary condition for compressible, turbulent, multispecies turbomachinery flows
,”
Comput. Fluids
178
,
41
55
(
2019
).
47.
A.
Patel
,
B. J.
Boersma
, and
R.
Pecnik
, “
Scalar statistics in variable property turbulent channel flows
,”
Phys. Rev. Fluids
2
(
8
),
084604
(
2017
).
48.
R.
Pecnik
and
A.
Patel
, “
Scaling and modelling of turbulence in variable property channel flows
,”
J. Fluid Mech.
823
,
R1
(
2017
).
49.
R.
Pichler
,
J.
Kopriva
,
G.
Laskowski
,
V.
Michelassi
, and
R.
Sandberg
, “
Highly resolved LES of a linear HPT vane cascade using structured and unstructured codes
,” in
ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, V02CT39A041
(
American Society of Mechanical Engineers
,
2016
).
50.
R.
Pichler
,
R. D.
Sandberg
,
G.
Laskowski
, and
V.
Michelassi
, “
High-fidelity simulations of a linear HPT vane cascade subject to varying inlet turbulence
,” in
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, V02AT40A001
(
American Society of Mechanical Engineers
,
2017
).
51.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
52.
T. J.
Praisner
and
J. P.
Clark
, “
Predicting transition in turbomachinery—Part I: A review and new model development
,”
J. Turbomach.
129
(
1
),
1
13
(
2007
).
53.
T. J.
Praisner
,
E. A.
Grover
,
M. J.
Rice
, and
J. P.
Clark
, “
Predicting transition in turbomachinery—Part II: Model validation and benchmarking
,”
J. Turbomach.
129
(
1
),
14
22
(
2007
).
54.
R.
Quadros
and
M.
Bernardini
, “
Numerical investigation of transitional shock-wave/boundary-layer interaction in supersonic regime
,”
AIAA J.
56
(
7
),
2712
2724
(
2018
).
55.
M.
Queguineur
,
L. Y. M.
Gicquel
,
F.
Dupuy
,
A.
Misdariis
, and
G.
Staffelbach
, “
Dynamic mode tracking and control with a relaxation method
,”
Phys. Fluids
31
(
3
),
034101
(
2019
).
56.
J. A.
Redford
,
N. D.
Sandham
, and
G. T.
Roberts
, “
Numerical simulations of turbulent spots in supersonic boundary layers: Effects of Mach number and wall temperature
,”
Prog. Aerosp. Sci.
52
,
67
79
(
2012
).
57.
B.
Rehill
,
E. J.
Walsh
,
L.
Brandt
,
P.
Schlatter
,
T. A.
Zaki
, and
D. M.
McEligot
, “
Identifying turbulent spots in transitional boundary layers
,”
J. Turbomach.
135
(
1
),
011019
(
2013
).
58.
J. J.
Riley
and
M.
Gad-el-Hak
, “
The dynamics of turbulent spots
,” in
Frontiers in Fluid Mechanics
(
Springer
,
1985
), pp.
123
155
.
59.
J.-C.
Robinet
, “
Bifurcations in shock-wave/laminar-boundary-layer interaction: Global instability approach
,”
J. Fluid Mech.
579
,
85
112
(
2007
).
60.
R. D.
Sandberg
and
V.
Michelassi
, “
The current state of high-fidelity simulations for main gas path turbomachinery components and their industrial impact
,”
Flow, Turbul. Combust.
102
(
4
),
797
848
(
2019
).
61.
R. D.
Sandberg
and
A. P. S.
Wheeler
, “
Effect of trailing-edge boundary conditions on acoustic feedback loops in high-pressure turbines
,”
J. Sound Vib.
461
,
114917
(
2019
).
62.
R.
Sankaran
and
R. A.
Antonia
, “
Influence of a favorable pressure gradient on the growth of a turbulent spot
,”
AIAA J.
26
(
7
),
885
887
(
1988
).
63.
A.
Sansica
,
N. D.
Sandham
, and
Z.
Hu
, “
Instability and low-frequency unsteadiness in a shock-induced laminar separation bubble
,”
J. Fluid Mech.
798
,
5
26
(
2016
).
64.
S. P.
Schneider
, “
Improved methods for measuring laminar-turbulent intermittency in boundary layers
,”
Exp. Fluids
18
(
5
),
370
375
(
1995
).
65.
T.
Schönfeld
and
M.
Rudgyard
, “
Steady and unsteady flow simulations using the hybrid flow solver AVBP
,”
AIAA J.
37
(
11
),
1378
1385
(
1999
).
66.
G. B.
Schubauer
and
P. S.
Klebanoff
, “
Contributions on the mechanics of boundary-layer transition
,” NACA Technical Note 3489,
1955
.
67.
L.
Segui
,
L.
Gicquel
,
F.
Duchaine
, and
J.
de Laborderie
, “
LES of the LS89 cascade: Influence of inflow turbulence on the flow predictions
,” in
Proceedings of 12th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics ETC12
,
Stockholm, Sweden
,
3–7, 2017
.
68.
L. M.
Segui
,
L. Y. M.
Gicquel
,
F.
Duchaine
, and
J.
de Laborderie
, “
Importance of boundary layer transition in a high-pressure turbine cascade using LES
,” in
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
(
American Society of Mechanical Engineers Digital Collection
,
2018
).
69.
A.
Seifert
and
I. J.
Wygnanski
, “
On turbulent spots in a laminar boundary layer subjected to a self-similar adverse pressure gradient
,”
J. Fluid Mech.
296
,
185
209
(
1995
).
70.
R. L.
Simpson
, “
Turbulent boundary-layer separation
,”
Annu. Rev. Fluid Mech.
21
(
1
),
205
232
(
1989
).
71.
D. R.
Stull
and
H.
Prophet
,
JANAF Thermochemical Tables
, 2nd ed. (
U.S. National Bureau of Standards
,
1971
), Technical Report NSRDS-NBS 37.
72.
W.
Sutherland
, “
LII. The viscosity of gases and molecular force
,”
London, Edinburgh Dublin Philos. Mag. J. Sci.
36
(
223
),
507
531
(
1893
).
73.
K.
Taira
,
S. L.
Brunton
,
S. T. M.
Dawson
,
C. W.
Rowley
,
T.
Colonius
,
B. J.
McKeon
,
O. T.
Schmidt
,
S.
Gordeyev
,
V.
Theofilis
, and
L. S.
Ukeiley
, “
Modal analysis of fluid flows: An overview
,”
AIAA J.
55
,
4013
4041
(
2017
).
74.
J.
Van den Eynde
and
J.
Steelant
, “
Compressibility and temperature effects on turbulent spot growth
,” in
Proceedings of HiSST
,
2018
.
75.
A. P. S.
Wheeler
,
R. D.
Sandberg
,
N. D.
Sandham
,
R.
Pichler
,
V.
Michelassi
, and
G.
Laskowski
, “
Direct numerical simulations of a high-pressure turbine vane
,”
J. Turbomach.
138
(
7
),
071003
(
2016
).
76.
I.
Wygnanski
, “
The effects of Reynolds number and pressure gradient on the transitional spot in a laminar boundary layer
,” in
The Role of Coherent Structures in Modelling Turbulence and Mixing
(
Springer
,
1981
), pp.
304
332
.
77.
B.
Xiutao
,
W.
Qingsong
,
S.
Xinrong
, and
Y.
Xin
, “
Interaction mechanisms of shock waves with the boundary layer and wakes in a highly-loaded NGV using hybrid RANS/LES
,”
Chin. J. Aeronaut.
33
,
149
(
2019
).
78.
T. A.
Zaki
, “
From streaks to spots and on to turbulence: Exploring the dynamics of boundary layer transition
,”
Flow, Turbul. Combust.
91
(
3
),
451
473
(
2013
).
79.
M.
Zauner
,
N. D.
Sandham
,
A.
Wheeler
, and
R.
Sandberg
, “
Linear stability prediction of vortex structures on high pressure turbine blades
,”
Int. J. Turbomach., Propul. Power
2
(
2
),
8
(
2017
).
80.
Y.
Zhao
and
R. D.
Sandberg
, “
Bypass transition in boundary layers subject to strong pressure gradient and curvature effects
,”
J. Fluid Mech.
888
,
A4
(
2020
).
You do not currently have access to this content.