The linear stability and energy stability of the plane Poiseuille flow with the isotropic and anisotropic slip boundary conditions are theoretically analyzed and numerically calculated in this paper. The asymptotic expansions of the critical parameters for the linear stability and energy stability are derived from the eigenvalue equations characterizing the least stable modes. The critical Reynolds number for the linear stability based on 1.5 times of the bulk mean streamwise velocity is found to be Rl2D(1+2741l2)R02D when the non-dimensional isotropic slip length l ≪ 1, where R02D5772 is the critical Reynolds number under the no-slip boundary condition. The critical Reynolds numbers for the linear stability are calculated for a wide range of anisotropic slip lengths and are found to be no larger than their counterparts in the isotropic slip cases with the same streamwise slip lengths. In the energy stability analyses of the two-dimensional and three-dimensional plane Poiseuille flows with the isotropic slip boundary condition, the critical Reynolds numbers are found to be RlE2D(1+14.95l2)R0E2D and RlE3D(1+8.37l2)R0E3D, where R0E2D87.6 and R0E3D49.6 are their counterparts under the no-slip boundary condition. In the three-dimensional plane Poiseuille flow with the anisotropic slip boundary condition, the critical Reynolds number for the energy stability increases with the increase in streamwise slip length lx and with the decrease in spanwise slip length lz, and its first-order approximation is Rlx,lzE3D[1+2.41(lxlz)]R0E3D.

1.
D. W.
Bechert
and
M.
Bartenwerfer
, “
The viscous flow on surfaces with longitudinal ribs
,”
J. Fluid Mech.
206
,
105
129
(
1989
).
2.
M.
Itoh
,
S.
Tamano
,
R.
Iguchi
,
K.
Yokota
,
N.
Akino
,
R.
Hino
, and
S.
Kubo
, “
Turbulent drag reduction by the seal fur surface
,”
Phys. Fluids
18
,
065102
(
2006
).
3.
S.
Martin
and
B.
Bhushan
, “
Fluid flow analysis of a shark-inspired microstructure
,”
J. Fluid Mech.
756
,
5
29
(
2014
).
4.
P. R.
Bandyopadhyay
and
A. M.
Hellum
, “
Modeling how shark and dolphin skin patterns control transitional wall-turbulence vorticity patterns using spatiotemporal phase reset mechanisms
,”
Sci. Rep.
4
,
6650
(
2014
).
5.
A.
Boomsma
and
F.
Sotiropoulos
, “
Direct numerical simulation of sharkskin denticles in turbulent channel flow
,”
Phys. Fluids
28
,
035106
(
2016
).
6.
M. B.
Martell
,
J. B.
Perot
, and
J. P.
Rothstein
, “
Direct numerical simulations of turbulent flows over superhydrophobic surfaces
,”
J. Fluid Mech.
620
,
31
41
(
2009
).
7.
R. J.
Daniello
,
N. E.
Waterhouse
, and
J. P.
Rothstein
, “
Drag reduction in turbulent flows over superhydrophobic surfaces
,”
Phys. Fluids
21
,
085103
(
2009
).
8.
J. P.
Rothstein
, “
Slip on superhydrophobic surfaces
,”
Annu. Rev. Fluid Mech.
42
,
89
109
(
2010
).
9.
M. B.
Martell
,
J. P.
Rothstein
, and
J. B.
Perot
, “
An analysis of superhydrophobic turbulent drag reduction mechanisms using direct numerical simulation
,”
Phys. Fluids
22
,
065102
(
2010
).
10.
T. O.
Jelly
,
S. Y.
Jung
, and
T. A.
Zaki
, “
Turbulence and skin friction modification in channel flow with streamwise-aligned superhydrophobic surface texture
,”
Phys. Fluids
26
,
095102
(
2014
).
11.
J.
Zhang
,
Z.
Yao
, and
P.
Hao
, “
Drag reductions and the air-water interface stability of superhydrophobic surfaces in rectangular channel flow
,”
Phys. Rev. E
94
,
053117
(
2016
).
12.
B.
Hof
, “
Water flows out of touch
,”
Nature
541
,
161
162
(
2017
).
13.
Y.
Li
,
K.
Alame
, and
K.
Mahesh
, “
Feature-resolved computational and analytical study of laminar drag reduction by superhydrophobic surfaces
,”
Phys. Rev. Fluids
2
,
054002
(
2017
).
14.
J. W.
Gose
,
K.
Golovin
,
M.
Boban
,
J. M.
Mabry
,
A.
Tuteja
,
M.
Perlin
, and
S. L.
Ceccio
, “
Characterization of superhydrophobic surfaces for drag reduction in turbulent flow
,”
J. Fluid Mech.
845
,
560
580
(
2018
).
15.
A.
Rastegari
and
R.
Akhavan
, “
On drag reduction scaling and sustainability bounds of superhydrophobic surfaces in high Reynolds number turbulent flows
,”
J. Fluid Mech.
864
,
327
347
(
2019
).
16.
A.
Rajappan
,
K.
Golovin
,
B.
Tobelmann
,
V.
Pillutla
,
Abhijeet
,
W.
Choi
,
A.
Tuteja
, and
G. H.
McKinley
, “
Influence of textural statistics on drag reduction by scalable, randomly rough superhydrophobic surfaces in turbulent flow
,”
Phys. Fluids
31
,
042107
(
2019
).
17.
W.
Abu Rowin
and
S.
Ghaemi
, “
Streamwise and spanwise slip over a superhydrophobic surface
,”
J. Fluid Mech.
870
,
1127
1157
(
2019
).
18.
K.
Alamé
and
K.
Mahesh
, “
Wall-bounded flow over a realistically rough superhydrophobic surface
,”
J. Fluid Mech.
873
,
977
1019
(
2019
).
19.
M. S.
Naim
and
M. F.
Baig
, “
Turbulent drag reduction in Taylor–Couette flows using different super-hydrophobic surface configurations
,”
Phys. Fluids
31
,
095108
(
2019
).
20.
J.
Seo
and
A.
Mani
, “
On the scaling of the slip velocity in turbulent flows over superhydrophobic surfaces
,”
Phys. Fluids
28
,
025110
(
2016
).
21.
A.
Rastegari
and
R.
Akhavan
, “
The common mechanism of turbulent skin-friction drag reduction with superhydrophobic longitudinal microgrooves and riblets
,”
J. Fluid Mech.
838
,
68
104
(
2018
).
22.
C.
Navier
, “
Mémoire sur les lois du mouvement des fluides
,”
Mem. Acad. Sci. Inst. Fr.
6
,
389
440
(
1827
).
23.
C. Y.
Wang
, “
Flow over a surface with parallel grooves
,”
Phys. Fluids
15
,
1114
1121
(
2003
).
24.
F.
Feuillebois
,
M. Z.
Bazant
, and
O. I.
Vinogradova
, “
Effective slip over superhydrophobic surfaces in thin channels
,”
Phys. Rev. Lett.
102
,
026001
(
2009
).
25.
E. S.
Asmolov
and
O. I.
Vinogradova
, “
Effective slip boundary conditions for arbitrary one-dimensional surfaces
,”
J. Fluid Mech.
706
,
108
117
(
2012
).
26.
C. J.
Teo
and
B. C.
Khoo
, “
Analysis of Stokes flow in microchannels with superhydrophobic surfaces containing a periodic array of micro-grooves
,”
Microfluid. Nanofluid.
7
,
353
382
(
2009
).
27.
M. Z.
Bazant
and
O. I.
Vinogradova
, “
Tensorial hydrodynamic slip
,”
J. Fluid Mech.
613
,
125
134
(
2008
).
28.
G. A.
Zampogna
,
J.
Magnaudet
, and
A.
Bottaro
, “
Generalized slip condition over rough surfaces
,”
J. Fluid Mech.
858
,
407
436
(
2019
).
29.
T.
Min
and
J.
Kim
, “
Effects of hydrophobic surface on skin-friction drag
,”
Phys. Fluids
16
,
L55
L58
(
2004
).
30.
K.
Fukagata
,
N.
Kasagi
, and
P.
Koumoutsakos
, “
A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces
,”
Phys. Fluids
18
,
051703
(
2006
).
31.
A.
Busse
and
N. D.
Sandham
, “
Influence of an anisotropic slip-length boundary condition on turbulent channel flow
,”
Phys. Fluids
24
,
055111
(
2012
).
32.
C.
Lee
,
C.-H.
Choi
, and
C.-J.
Kim
, “
Superhydrophobic drag reduction in laminar flows: A critical review
,”
Exp. Fluids
57
,
176
(
2016
).
33.
C.
Lee
and
C.-J.
Kim
, “
Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls
,”
Langmuir
25
,
12812
12818
(
2009
).
34.
A.
Spille
,
A.
Rauh
, and
H.
Bühring
, “
Critical curves of plane Poiseuille flow with slip boundary conditions
,”
Nonlinear Phenom. Complex Syst.
3
,
171
173
(
2000
).
35.
E.
Lauga
and
C.
Cossu
, “
A note on the stability of slip channel flows
,”
Phys. Fluids
17
,
088106
(
2005
).
36.
T.
Min
and
J.
Kim
, “
Effects of hydrophobic surface on stability and transition
,”
Phys. Fluids
17
,
108106
(
2005
).
37.
S. A.
Orszag
, “
Accurate solution of the Orr–Sommerfeld stability equation
,”
J. Fluid Mech.
50
,
689
703
(
1971
).
38.
H. B.
Squire
, “
On the stability for three-dimensional disturbances of viscous fluid flow between parallel walls
,”
Proc. R. Soc. London, Ser. A
142
,
621
628
(
1933
).
39.
Q.
He
and
X.-P.
Wang
, “
The effect of the boundary slip on the stability of shear flow
,”
Z. Angew. Math. Mech.
88
,
729
734
(
2008
).
40.
L.
Ren
,
J.-G.
Chen
, and
K.-Q.
Zhu
, “
Dual role of wall slip on linear stability of plane Poiseuille flow
,”
Chin. Phys. Lett.
25
,
601
603
(
2008
).
41.
C.
Chai
and
B.
Song
, “
Stability of slip channel flow revisited
,”
Phys. Fluids
31
,
084105
(
2019
).
42.
J. O.
Pralits
,
E.
Alinovi
, and
A.
Bottaro
, “
Stability of the flow in a plane microchannel with one or two superhydrophobic walls
,”
Phys. Rev. Fluids
2
,
013901
(
2017
).
43.
M.
Webber
, “
Instability of fluid flows, including boundary slip
,” Ph.D. thesis,
Durham University
,
2007
.
44.
F. H.
Busse
, “
Bounds on the transport of mass and momentum by turbulent flow between parallel plates
,”
Z. Angew. Math. Phys.
20
,
1
14
(
1969
).
45.
S. C.
Reddy
,
P. J.
Schmid
, and
D. S.
Henningson
, “
Pseudospectra of the Orr–Sommerfeld operator
,”
SIAM J. Appl. Math.
53
,
15
47
(
1993
).
46.
W. M.
Orr
, “
The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part II: A viscous liquid
,”
Proc. R. Ir. Acad., Sect. A
27
,
69
138
(
1907
).
47.
Multiprecision Computing Toolbox for MATLAB 4.7.1.13688,
Advanpix LLC.
,
Yokohama, Japan
,
2020
.
48.
J.
Arndt
and
C.
Haenel
,
π—Unleashed
(
Springer-Verlag
,
Berlin
,
2001
).
49.
K.
Fujimura
, “
Automated finder for the critical condition on the linear stability of fluid motions
,” Technical Report No. JAERI-M 90-057,
Japan Atomic Energy Research Institute
,
1990
.
50.
X.
Xiong
and
J.
Tao
(
2020
). “
Numerical results on linear stability and energy stability of plane Poiseuille flow with isotropic and anisotropic slip boundary conditions
,” Open Science Framework, Dataset. .
51.
I. V.
Schensted
, “
Contributions to the theory of hydrodynamic stability
,” Ph.D. thesis,
University of Michigan
,
1960
.
52.
R. C.
Di Prima
and
G. J.
Habetler
, “
A completeness theorem for non-selfadjoint eigenvalue problems in hydrodynamic stability
,”
Arch. Ration. Mech. Anal.
34
,
218
227
(
1969
).
53.
A.
Bottaro
,
P.
Corbett
, and
P.
Luchini
, “
The effect of base flow variation on flow stability
,”
J. Fluid Mech.
476
,
293
302
(
2003
).
54.
L. S. de B.
Alves
,
S. C.
Hirata
,
M.
Schuabb
, and
A.
Barletta
, “
Identifying linear absolute instabilities from differential eigenvalue problems using sensitivity analysis
,”
J. Fluid Mech.
870
,
941
969
(
2019
).
55.
D. D.
Joseph
, “
Nonlinear stability of the Boussinesq equations by the method of energy
,”
Arch. Ration. Mech. Anal.
22
,
163
184
(
1966
).
56.
X.
Xiong
and
Z.-M.
Chen
, “
A conjecture on the least stable mode for the energy stability of plane parallel flows
,”
J. Fluid Mech.
881
,
794
814
(
2019
).
57.
L. N.
Trefethen
and
M.
Embree
,
Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators
(
Princeton University Press
,
Princeton
,
2005
).
58.
P. J.
Schmid
, “
Nonmodal stability theory
,”
Annu. Rev. Fluid Mech.
39
,
129
162
(
2007
).
You do not currently have access to this content.