Direct numerical simulations (DNSs) of nanoparticle formation in reactive flows are challenging, and only greatly simplified DNS test-cases are possible, which help clarify the turbulence–particle–dynamics interaction and guide the necessary modeling efforts. As a basis for such studies, a new DNS database is introduced, which resolves the smallest relevant scales of the nanoparticle concentration field to obtain insights into the statistics of nanoparticle formation in reactive flows. Formation and evolution of iron oxide nanoparticles in premixed and non-premixed flames wrapped-up by a vortex have been investigated using the sectional model and direct chemistry. The DNSs capture the “engulfing” and local dilution of the particle fields. Different zones of high particle number concentration have been found in every flame, and it was shown that the thickness of these zones decreases with increasing Schmidt number, which confirms that in simulations of nanoparticle-forming turbulent reacting flows, the grid resolution has to be very fine to resolve the characteristic scale for high sections. The contributions to the change in particle concentration due to diffusion, coagulation, and nucleation have been analyzed in detail, and dominant contributions across the particle number concentration layers and across the flames have been identified. This analysis has also been carried out in terms of flat, concave, and convex iso-surface geometries, induced by the flame–vortex interaction and characterized by the curvature of the particle number concentration fields and also by the flame curvature. The results demonstrate that the flame curvature effects cannot be ignored in modeling strategies. The probability density functions for the particle number concentrations have been analyzed and quantified in terms of Shannon information entropy, which illustrates the effect of fast diffusion (and entropy production) of the smaller particles and slow diffusion (and entropy production) of the largest particles with high Schmidt numbers. In addition, the unclosed filtered or averaged agglomeration term was evaluated as a basis for future modeling efforts, showing that agglomeration rates will be underestimated by orders of magnitude unless suitable models are developed.

1.
S. E.
Pratsinis
, “
Flame aerosol synthesis of ceramic powders
,”
Prog. Energy Combust. Sci.
24
,
197
219
(
1998
).
2.
M. S.
Wooldridge
, “
Gas-phase combustion synthesis of particles
,”
Prog. Energy Combust. Sci.
24
,
63
87
(
1998
).
3.
S.
Friedlander
,
Smoke Dust and Haze
(
Oxford University Press
,
New York
,
2000
).
4.
Y. H.
Sehlleier
,
S.
Dobrowolny
,
I.
Plümel
,
L.
Xiao
,
F.
Mahlendorf
,
A.
Heinzel
,
C.
Schulz
, and
H.
Wiggers
, “
High-yield and scalable synthesis of a silicon/aminosilane-functionalized carbon nanotubes/carbon (Si/A-CNT/C) composite as a high-capacity anode for lithium-ion batteries
,”
J. Appl. Electrochem.
46
,
229
239
(
2016
).
5.
T.
Völker
and
S.
Odenbach
, “
The influence of a uniform magnetic field on the Soret coefficient of magnetic nanoparticles
,”
Phys. Fluids
15
,
2198
2207
(
2003
).
6.
M.
Dietzel
and
D.
Poulikakos
, “
Laser-induced motion in nanoparticle suspension droplets on a surface
,”
Phys. Fluids
17
,
102106
(
2005
).
7.
H.
Shi
,
C.
Kleinstreuer
, and
Z.
Zhang
, “
Dilute suspension flow with nanoparticle deposition in a representative nasal airway model
,”
Phys. Fluids
20
,
013301
(
2008
).
8.
P.
Kangude
,
D.
Bhatt
, and
A.
Srivastava
, “
Experiments on the effects of nanoparticles on subcooled nucleate pool boiling
,”
Phys. Fluids
30
,
057105
(
2018
).
9.
Y.
Xiong
and
S. E.
Pratsinis
, “
Formation of agglomerate particles by coagulation and sintering—Part I. A two-dimensional solution of the population balance equation
,”
J. Aerosol Sci.
24
,
283
300
(
1993
).
10.
S.-Y.
Lu
,
H.-C.
Lin
, and
C.-H.
Lin
, “
Modeling particle growth and deposition in a tubular CVD reactor
,”
J. Cryst. Growth
200
,
527
542
(
1999
).
11.
J.
Pyykönen
and
J.
Jokiniemi
, “
Computational fluid dynamics based sectional aerosol modelling schemes
,”
J. Aerosol Sci.
31
,
531
550
(
2000
).
12.
S. E.
Miller
and
S. C.
Garrick
, “
Nanoparticle coagulation in a planar jet
,”
Aerosol Sci. Technol.
38
,
79
89
(
2004
).
13.
S. C.
Garrick
,
K. E. J.
Lehtinen
, and
M. R.
Zachariah
, “
Nanoparticle coagulation via a Navier-Stokes/nodal methodology: Evolution of the particle field
,”
J. Aerosol Sci.
37
,
555
576
(
2006
).
14.
S.
Das
and
S. C.
Garrick
, “
The effects of turbulence on nanoparticle growth in turbulent reacting jets
,”
Phys. Fluids
22
,
103303
(
2010
).
15.
Y.
Xiong
and
S. E.
Pratsinis
, “
Gas phase production of particles in reactive turbulent flows
,”
J. Aerosol Sci.
22
,
637
655
(
1991
).
16.
J. I.
Jeong
and
M.
Choi
, “
A sectional method for the analysis of growth of polydisperse non-spherical particles undergoing coagulation and coalescence
,”
J. Aerosol Sci.
32
,
565
582
(
2001
).
17.
M.
Frenklach
and
S. J.
Harris
, “
Aerosol dynamics modeling using the method of moments
,”
J. Colloid Interface Sci.
118
,
252
261
(
1987
).
18.
D. L.
Marchisio
and
R. O.
Fox
, “
Solution of population balance equations using the direct quadrature method of moments
,”
J. Aerosol Sci.
36
,
43
73
(
2005
).
19.
R.
Dagani
, “
NASA goes nano-NanoSpace conference highlights agency’s high hopes that nanotechnology will make new types of space missions possible
,”
Chem. Eng. News
78
(
9
),
36
38
(
2000
).
20.
J.
Wu
and
S.
Menon
, “
Aerosol dynamics in the near field of engine exhaust plumes
,”
J. Appl. Meteorol.
40
,
795
809
(
2001
).
21.
A. R.
Kerstein
, “
Linear-eddy modeling of turbulent transport. II: Application to shear layer mixing
,”
Combust. Flame
75
,
397
413
(
1989
).
22.
A.
Rittler
,
L.
Deng
,
I.
Wlokas
, and
A. M.
Kempf
, “
Large eddy simulations of nanoparticle synthesis from flame spray pyrolysis
,”
Proc. Combust. Inst.
36
,
1077
1087
(
2017
).
23.
F. E.
Kruis
,
K. A.
Kusters
,
S. E.
Pratsinis
, and
B.
Scarlett
, “
A simple model for the evolution of the characteristics of aggregate particles undergoing coagulation and sintering
,”
Aerosol Sci. Technol.
19
,
514
526
(
1993
).
24.
C. S.
Yoo
and
H. G.
Im
, “
Transient soot dynamics in turbulent nonpremixed ethylene-air counterflow flames
,”
Proc. Combust. Inst.
31
,
701
708
(
2007
).
25.
F.
Bisetti
,
G.
Blanquart
,
M. E.
Mueller
, and
H.
Pitsch
, “
On the formation and early evolution of soot in turbulent nonpremixed flames
,”
Combust. Flame
159
,
317
335
(
2012
).
26.
A.
Attili
,
F.
Bisetti
,
M. E.
Mueller
, and
H.
Pitsch
, “
Formation, growth, and transport of soot in a three-dimensional turbulent non-premixed jet flame
,”
Combust. Flame
161
,
1849
1865
(
2014
).
27.
F.
Bisetti
,
A.
Attili
, and
H.
Pitsch
, “
Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations
,”
Philos. Trans. R. Soc., A
372
,
20130324
(
2014
).
28.
A.
Attili
,
F.
Bisetti
,
M. E.
Mueller
, and
H.
Pitsch
, “
Effects of non-unity Lewis number of gas-phase species in turbulent nonpremixed sooting flames
,”
Combust. Flame
166
,
192
202
(
2016
).
29.
B.
Franzelli
,
A.
Cuoci
,
A.
Stagni
,
M.
Ihme
,
T.
Faravelli
, and
S.
Candel
, “
Numerical investigation of soot-flame-vortex interaction
,”
Proc. Combust. Inst.
36
,
753
761
(
2017
).
30.
M.
Lucchesi
,
A.
Abdelgadir
,
A.
Attili
, and
F.
Bisetti
, “
Simulation and analysis of the soot particle size distribution in a turbulent nonpremixed flame
,”
Combust. Flame
178
,
35
45
(
2017
).
31.
R.
Singh
and
V.
Raman
, “
Two-dimensional direct numerical simulation of nanoparticle precursor evolution in turbulent flames using detailed chemistry
,”
Chem. Eng. J.
207-208
,
794
802
(
2012
).
32.
A.
Abdelsamie
,
F. E.
Kruis
,
H.
Wiggers
, and
D.
Thévenin
, “
Nanoparticle formation and behavior in turbulent spray flames investigated by DNS
,”
Flow, Turbul. Combust.
105
,
497
(
2020
).
33.
F.
Schneider
,
S.
Suleiman
,
J.
Menser
,
E.
Borukhovich
,
I.
Wlokas
,
A.
Kempf
,
H.
Wiggers
, and
C.
Schulz
, “
SpraySyn—A standardized burner configuration for nanoparticle synthesis in spray flames
,”
Rev. Sci. Instrum.
90
,
085108
(
2019
).
34.
M. D.
Rumminger
,
D.
Reinelt
,
V.
Babushok
, and
G. T.
Linteris
, “
Numerical study of the inhibition of premixed and diffusion flames by iron pentacarbonyl 11 official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States
,”
Combust. Flame
116
,
207
219
(
1999
).
35.
A.
Giesen
,
J.
Herzler
, and
P.
Roth
, “
High temperature oxidation of iron atoms by CO2
,”
Phys. Chem. Chem. Phys.
4
,
3665
3668
(
2002
).
36.
H. R.
Orthner
and
P.
Roth
, “
Formation of iron oxide powder in a hot-wall flow reactor
,”
Mater. Chem. Phys.
78
,
453
458
(
2003
).
37.
I.
Wlokas
,
A.
Faccinetto
,
B.
Tribalet
,
C.
Schulz
, and
A.
Kempf
, “
Mechanism of iron oxide formation from iron pentacarbonyl-doped low-pressure hydrogen/oxygen flames
,”
Int. J. Chem. Kinet.
45
,
487
498
(
2013
).
38.
O. M.
Feroughi
,
S.
Hardt
,
I.
Wlokas
,
T.
Hülser
,
H.
Wiggers
,
T.
Dreier
, and
C.
Schulz
, “
Laser-based in situ measurement and simulation of gas-phase temperature and iron atom concentration in a pilot-plant nanoparticle synthesis reactor
,”
Proc. Combust. Inst.
35
,
2299
2306
(
2015
).
39.
J. Z.
Wen
,
C. F.
Goldsmith
,
R. W.
Ashcraft
, and
W. H.
Green
, “
Detailed kinetic modeling of iron nanoparticle synthesis from the decomposition of Fe(CO)5
,”
J. Phys. Chem.
111
,
5677
5688
(
2007
).
40.
M.
Poliak
,
A.
Fomin
,
V.
Tsionsky
,
S.
Cheskis
,
I.
Wlokas
, and
I.
Rahinov
, “
On the mechanism of nanoparticle formation in a flame doped by iron pentacarbonyl
,”
Phys. Chem. Chem. Phys.
17
,
680
685
(
2015
).
41.
S.
Kluge
,
L.
Deng
 et al., “
Initial reaction steps during flame synthesis of iron-oxide nanoparticles
,”
CrystEngComm
17
,
6930
6939
(
2015
).
42.
J.
Sellmann
,
I.
Rahinov
,
S.
Kluge
,
H.
Jünger
,
A.
Fomin
,
S.
Cheskis
,
C.
Schulz
,
H.
Wiggers
,
A.
Kempf
, and
I.
Wlokas
, “
Detailed simulation of iron oxide nanoparticle forming flames: Buoyancy and probe effects
,”
Proc. Combust. Inst.
37
,
1241
1248
(
2019
).
43.
P.-H.
Renard
,
D.
Thévenin
,
J. C.
Rolon
, and
S.
Candel
, “
Dynamics of flame/vortex interactions
,”
Prog. Energy Combust. Sci.
26
,
225
282
(
2000
).
44.
B.
Cetegen
and
S.
Basu
, “
Soot topography in a planar diffusion flame wrapped by a line vortex
,”
Combust. Flame
146
,
687
697
(
2006
).
45.
S.
Basu
,
T. J.
Barber
, and
B. M.
Cetegen
, “
Computational study of scalar mixing in the field of a gaseous laminar line vortex
,”
Phys. Fluids
19
,
053601
(
2007
).
46.
T.
Poinsot
and
D.
Veynante
,
Theoretical and Numerical Combustion
(
RT Edwards
,
2005
).
47.
N.
Peters
and
J.
Warnatz
,
Numerical methods in laminar flame propagation: A GAMM-Workshop
(
Springer-Verlag
,
Berlin, Germany
,
2013
), vol. 6.
48.
R.
Bird
,
W.
Stewart
,
N.
Lightfoot
, and
R.
Meredith
, “
Transport phenomena
,”
J. Electrochem. Soc.
108
(
3
),
78C
(
1961
).
49.
R. J.
Kee
,
M. E.
Coltrin
, and
P.
Glarborg
,
Chemically Reacting Flow: Theory and Practice
(
John Wiley & Sons
,
2003
).
50.
N.
Sikalo
,
O.
Hasemann
,
C.
Schulz
,
A.
Kempf
, and
I.
Wlokas
, “
A genetic algorithm-based method for the optimization of reduced kinetics mechanisms
,”
Int. J. Chem. Kinet.
47
,
695
723
(
2015
).
51.
J.
Mi
and
G. J.
Nathan
, “
The influence of probe resolution on the measurement of a passive scalar and its derivatives
,”
Exp. Fluids
34
,
687
696
(
2003
).
52.
G. K.
Batchelor
, “
Small-scale variation of convected quantities like temperature in turbulent fluid Part 1. General discussion and the case of small conductivity
,”
J. Fluid Mech.
5
,
113
133
(
1959
).
53.
S.
Lindsay
,
Introduction to Nanoscience
(
Oxford University Press
,
2009
).
54.
N.
Fuchs
,
The Mechanics of Aerosols
(
Pergamon Press
,
1964
).
55.
R. W.
Bilger
,
S. H.
Stårner
, and
R. J.
Kee
, “
On reduced mechanisms for methane air combustion in nonpremixed flames
,”
Combust. Flame
80
,
135
149
(
1990
).
56.
D. G.
Goodwin
,
H. K.
Moffat
, and
R. L.
Speth
, Cantera: An Object-oriented Software Toolkit for chemical kinetics, thermodynamics, and transport processes, Version 2.2.0. (
Caltech
,
Pasadena, CA
,
2009
).
57.
C. E.
Shannon
, “
A mathematical theory of communication
,”
Bell Syst. Tech. J.
27
,
379
423
(
1948
).
58.
C. E.
Shannon
, “
A mathematical theory of communication
,”
ACM SIGMOBILE Mobile Comput. Commun. Rev.
5
,
3
55
(
2001
).
59.
M.
Boger
,
D.
Veynante
,
H.
Boughanem
, and
A.
Trouvé
, “
Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion
,”
Symp. (Int.) Combust.
27
,
917
925
(
1998
).
60.
N.
Chakraborty
and
M.
Klein
, “
Influence of Lewis number on the surface density function transport in the thin reaction zone regime for turbulent premixed flames
,”
Phys. Fluids
20
,
065102
(
2008
).
You do not currently have access to this content.