We report the experimental investigations of two-phase flow boiling heat transfer characteristics of a refrigerant in a microfluidic channel at a high mass flux (more than 1000 kg/m2 s). We investigate the heat transfer coefficients at a heat flux range of 7.63 kW/m2–49.46 kW/m2, mass flux range of 600 kg/m2 s–1400 kg/m2 s (high mass flux), and saturation temperature range of 23 °C–31 °C. We propose the new two-phase flow boiling heat transfer correlation of a refrigerant, which is used as the working fluid for the present experiments, at the microfluidic scale. We experimentally establish the functional relationship of two-phase flow boiling heat transfer correlation of the refrigerant during flow boiling in a rectangular microchannel with the Reynolds number, the boiling number, and the Weber number. We believe that the inferences of this study may provide a design basis for the micro-heat exchanger, typically used for thermal management in electronic devices, micro-electro-mechanical systems, and electric vehicle battery cooling system.

1.
D.
Lorenzini
and
Y.
Joshi
, “
Flow boiling heat transfer in silicon microgaps with multiple hotspots and variable pin fin clustering
,”
Phys. Fluids
31
,
102002
(
2019
).
2.
R.
Xiong
and
J. N.
Chung
, “
An experimental study of the size effect on adiabatic gas-liquid two-phase flow patterns and void fraction in microchannels
,”
Phys. Fluids
19
,
033301
(
2007
).
3.
S. K.
Oudah
,
R.
Fang
,
A.
Tikadar
,
A. S.
Salman
, and
J. A.
Khan
, “
An experimental investigation of the effect of multiple inlet restrictors on the heat transfer and pressure drop in a flow boiling microchannel heat sink
,”
Int. J. Heat Mass Transfer
153
,
119582
(
2020
).
4.
S.-R.
Yan
,
N.
Shirani
,
M.
Zarringhalam
,
D.
Toghraie
,
Q.
Nguyen
, and
A.
Karimipour
, “
Prediction of boiling flow characteristics in rough and smooth microchannels using molecular dynamics simulation: Investigation the effects of boundary wall temperatures
,”
J. Mol. Liq.
306
,
112937
(
2020
).
5.
Y. F.
Li
,
G. D.
Xia
,
D. D.
Ma
,
J. L.
Yang
, and
W.
Li
, “
Experimental investigation of flow boiling characteristics in microchannel with triangular cavities and rectangular fins
,”
Int. J. Heat Mass Transfer
148
,
119036
(
2020
).
6.
G.
Xia
,
Y.
Lv
,
L.
Cheng
,
D.
Ma
, and
Y.
Jia
, “
Experimental study and dynamic simulation of the continuous two-phase instable boiling in multiple parallel microchannels
,”
Int. J. Heat Mass Transfer
138
,
961
984
(
2019
).
7.
K. P.
Drummond
,
J. A.
Weibel
, and
S. V.
Garimella
, “
Two-phase flow morphology and local wall temperatures in high-aspect-ratio manifold microchannels
,”
Int. J. Heat Mass Transfer
153
,
119551
(
2020
).
8.
D.
Deng
,
L.
Chen
,
W.
Wan
,
T.
Fu
, and
X.
Huang
, “
Flow boiling performance in pin fin- interconnected reentrant microchannels heat sink in different operational conditions
,”
Appl. Therm. Eng.
150
,
1260
1272
(
2019
).
9.
S. G.
Kandlikar
, “
History, advances, and challenges in liquid flow and flow boiling heat transfer in microchannels: A critical review
,”
J. Heat Transfer
134
,
034001
(
2012
).
10.
S. G.
Kandlikar
,
S.
Garimella
,
D.
Li
,
S.
Colin
, and
M. R.
King
, “
Heat transfer and fluid flow in minichannels and microchannels
,” in
Heat Transfer and Fluid Flow in Minichannels and Microchannels
(
Elsevier
,
Oxford
,
2006
).
11.
N. K.
Singh
and
B.
Premachandran
, “
Saturated film boiling over a circular cylinder subjected to horizontal cross-flow in the mixed regime
,”
Phys. Fluids
31
,
082109
(
2019
).
12.
N. K.
Singh
and
B.
Premachandran
, “
Mixed regime of film boiling over a horizontal cylinder in an upward flow of saturated liquid
,”
Phys. Fluids
30
,
122101
(
2018
).
13.
R.
Sadeghi
and
M. S.
Shadloo
, “
Three-dimensional numerical investigation of film boiling by the lattice Boltzmann method
,”
Numer. Heat Transfer, Part A
71
,
560
574
(
2017
).
14.
N. H.
Naqiuddin
,
L. H.
Saw
,
M. C.
Yew
,
F.
Yusof
,
T. C.
Ng
, and
M. K.
Yew
, “
Overview of micro-channel design for high heat flux application
,”
Renewable Sustainable Energy Rev.
82
,
901
914
(
2018
).
15.
A.
Sakanova
,
C. C.
Keian
, and
J.
Zhao
, “
Performance improvements of microchannel heat sink using wavy channel and nanofluids
,”
Int. J. Heat Mass Transfer
89
,
59
74
(
2015
).
16.
G.
Xia
,
D.
Ma
,
Y.
Zhai
,
Y.
Li
,
R.
Liu
, and
M.
Du
, “
Experimental and numerical study of fluid flow and heat transfer characteristics in microchannel heat sink with complex structure
,”
Energy Convers. Manage.
105
,
848
857
(
2015
).
17.
L.
Chai
,
G. D.
Xia
, and
H. S.
Wang
, “
Numerical study of laminar flow and heat transfer in microchannel heat sink with offset ribs on sidewalls
,”
Appl. Therm. Eng.
92
,
32
41
(
2016
).
18.
L.
Chai
,
G. D.
Xia
, and
H. S.
Wang
, “
Parametric study on thermal and hydraulic characteristics of laminar flow in microchannel heat sink with fan-shaped ribs on sidewalls—Part 3: Performance evaluation
,”
Int. J. Heat Mass Transfer
97
,
1091
1101
(
2016
).
19.
I. A.
Ghani
,
N.
Kamaruzaman
, and
N. A. C.
Sidik
, “
Heat transfer augmentation in a microchannel heat sink with sinusoidal cavities and rectangular ribs
,”
Int. J. Heat Mass Transfer
108
,
1969
1981
(
2017
).
20.
Y. F.
Li
,
G. D.
Xia
,
D. D.
Ma
,
Y. T.
Jia
, and
J.
Wang
, “
Characteristics of laminar flow and heat transfer in microchannel heat sink with triangular cavities and rectangular ribs
,”
Int. J. Heat Mass Transfer
98
,
17
28
(
2016
).
21.
G.
Wang
,
D.
Niu
,
F.
Xie
,
Y.
Wang
,
X.
Zhao
, and
G.
Ding
, “
Experimental and numerical investigation of a microchannel heat sink (MCHS) with micro-scale ribs and grooves for chip cooling
,”
Appl. Therm. Eng.
85
,
61
70
(
2015
).
22.
C. S.
Sharma
,
G.
Schlottig
,
T.
Brunschwiler
,
M. K.
Tiwari
,
B.
Michel
, and
D.
Poulikakos
, “
A novel method of energy efficient hotspot-targeted embedded liquid cooling for electronics: An experimental study
,”
Int. J. Heat Mass Transfer
88
,
684
694
(
2015
).
23.
H.
He
,
P.-f.
Li
,
R.-g.
Yan
, and
L.-m.
Pan
, “
Modeling of reversal flow and pressure fluctuation in rectangular microchannel
,”
Int. J. Heat Mass Transfer
102
,
1024
1033
(
2016
).
24.
P. K.
Mondal
and
S.
Mukherjee
, “
Viscous dissipation effects on the limiting value of Nusselt numbers for a shear-driven flow through an asymmetrically heated annulus
,”
Proc. Inst. Mech. Eng., Part C
226
,
2941
2949
(
2012
).
25.
P.
Kaushik
,
P. K.
Mondal
,
S.
Pati
, and
S.
Chakraborty
, “
Heat transfer and entropy generation characteristics of a non-Newtonian fluid squeezed and extruded between two parallel plates
,”
J. Heat Transfer
139
,
022004
(
2017
).
26.
H. S.
Gaikwad
,
P. K.
Mondal
, and
S.
Wongwises
, “
Non-linear drag induced entropy generation analysis in a microporous channel: The effect of conjugate heat transfer
,”
Int. J. Heat Mass Transfer
108
,
2217
2228
(
2017
).
27.
P. K.
Mondal
and
S.
Dholey
, “
Effect of conjugate heat transfer on the irreversibility generation rate in a combined Couette–Poiseuille flow between asymmetrically heated parallel plates: The entropy minimization analysis
,”
Energy
83
,
55
64
(
2015
).
28.
P. K.
Mondal
and
S.
Mukherjee
, “
Viscous dissipation effects on the limiting value of Nusselt numbers for a shear driven flow between two asymmetrically heated parallel plates
,”
Front. Heat Mass Transfer
3
,
033004
(
2012
).
29.
P. K.
Mondal
, “
Thermodynamically consistent limiting forced convection heat transfer in a asymmetrically heated porous channel: An analytical study
,”
Transp. Porous Media
100
,
17
37
(
2013
).
30.
C.
Keepaiboon
and
S.
Wongwises
, “
Two-phase flow patterns and heat transfer characteristics of R134a refrigerant during flow boiling in a single rectangular micro-channel
,”
Exp. Therm. Fluid Sci.
66
,
36
45
(
2015
).
31.
C.
Keepaiboon
,
P.
Thiangtham
,
O.
Mahian
,
A. S.
Dalk
l
ç
ıı, and
S.
Wongwises
, “
Pressure drop characteristics of R134a during flow boiling in a single rectangular micro-channel
,”
Int. Commun. Heat Mass Transfer
71
,
245
253
(
2016
).
32.
P.
Thiangtham
,
C.
Keepaiboon
,
P.
Kiatpachai
,
L. G.
Asirvatham
,
O.
Mahian
,
A. S.
Dalkilic
, and
S.
Wongwises
, “
An experimental study on two-phase flow patterns and heat transfer characteristics during boiling of R134a flowing through a multi-microchannel heat sink
,”
Int. J. Heat Mass Transfer
98
,
390
400
(
2016
).
33.
S. G.
Kandlikar
, “
Fundamental issues related to flow boiling in minichannels and microchannels
,”
Exp. Therm. Fluid Sci.
26
,
389
407
(
2002
).
34.
H.
Li
and
P.
Hrnjak
, “
Flow patterns and plug/slug flow characteristic of R134a in a 0.643 mm microchannel tube
,”
Int. J. Heat Mass Transfer
132
,
1062
1073
(
2019
).
35.
E. M.
Fayyadh
,
M. M.
Mahmoud
,
K.
Sefiane
, and
T. G.
Karayiannis
, “
Flow boiling heat transfer of R134a in multi microchannels
,”
Int. J. Heat Mass Transfer
110
,
422
436
(
2017
).
36.
G. M.
Lazarek
and
S. H.
Black
, “
Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113
,”
Int. J. Heat Mass Transfer
25
,
945
960
(
1982
).
37.
T. N.
Tran
,
M. W.
Wambsganss
, and
D. M.
France
, “
Small circular- and rectangular-channel boiling with two refrigerants
,”
Int. J. Multiphase Flow
22
,
485
498
(
1996
).
38.
R.
Yun
,
J.
Hyeok Heo
, and
Y.
Kim
, “
Evaporative heat transfer and pressure drop of R410A in microchannels
,”
Int. J. Refrig.
29
,
92
100
(
2006
).
39.
P.-S.
Lee
and
S. V.
Garimella
, “
Saturated flow boiling heat transfer and pressure drop in silicon microchannel arrays
,”
Int. J. Heat Mass Transfer
51
,
789
806
(
2008
).
40.
J. R.
Colliier
and
J. G.
Thome
, “
Convective boiling and condensation
,” in
Convective Boiling and Condensation
, 3rd ed. (
Oxford University Press
,
Oxford, UK
,
1994
).
41.
V. P.
Carey
, “
Liquid–vapor phase-change phenomena
,” in
Liquid–Vapor Phase-Change Phenomena
, 2nd ed. (
Taylor & Francis
,
New York, USA
,
2007
).
42.
H.
Li
and
P.
Hrnjak
, “
Measurement of heat transfer coefficient and pressure drop during evaporation of R134a in new type facility with one pass flow through microchannel tube
,”
Int. J. Heat Mass Transfer
115
,
502
512
(
2017
).
43.
S. M.
Zivi
, “
Estimation of steady-state steam void-fraction by means of the principle of minimum entropy production
,”
J. Heat Transfer
86
,
247
251
(
1964
).
44.
W. J.
Holman
and
J. P.
Gajda
, “
Experimental methods for engineers
,” in
Experimental Methods for Engineers
(
McGraw-Hill
,
New York, USA
,
1994
).
45.
P. K.
Mondal
,
S.
Mukherjee
,
B.
Kundu
, and
S.
Wongwises
, “
Investigation of the crosswind-influenced thermal performance of a natural draft counterflow cooling tower
,”
Int. J. Heat Mass Transfer
85
,
1049
1057
(
2015
).
46.
P. R. H.
Blasius
, “
Das aehnlichkeitsgesetz bei reibungsvorgangen in flüssigkeiten, forschungsheft
,” in
Das Aehnlichkeitsgesetz Bei Reibungsvorgangen in Flüssigkeiten
(
Forschungsheft
,
1913
).
47.
L. M. K.
Dittus
and
F. W.
Boelter
, “
Heat transfer in automobile radiators of the tubular type
,” in
Heat Transfer in Automobile Radiators of the Tubular Type
(
University of California Press
,
Berkeley, CA
,
1930
).
48.
X. F.
Peng
,
G. P.
Peterson
, and
B. X.
Wang
, “
Frictional flow characteristics of water flowing through rectangular microchannels
,”
Exp. Heat Transfer
7
,
249
264
(
1994
).
49.
D.
Liu
and
S. V.
Garimella
, “
Investigation of liquid flow in microchannels
,”
J. Thermophys. Heat Transfer
18
,
65
72
(
2004
).
50.
S.
Mostafa Ghiaasiaan
, “
Two-phase flow, boiling, and condensation in conventional and miniature systems
,” in
Two-Phase Flow, Boiling, and Condensation in Conventional and Miniature Systems
, 2nd ed. (
Cambridge University Press
,
NewYork
,
2017
).
51.
H.
Ju Lee
and
S.
Yong Lee
, “
Pressure drop correlations for two-phase flow within horizontal rectangular channels with small heights
,”
Int. J. Multiphase Flow
27
,
783
796
(
2001
).
52.
C. G.
Subramaniam
and
P. K.
Mondal
, “
Effect of couple stresses on the rheology and dynamics of linear Maxwell viscoelastic fluids
,”
Phys. Fluids
32
,
013108
(
2020
).
53.
H. S.
Gaikwad
,
P.
Baghel
,
R.
Sarma
, and
P. K.
Mondal
, “
Transport of neutral solutes in a viscoelastic solvent through a porous microchannel
,”
Phys. Fluids
31
,
022006
(
2019
).
54.
P. K.
Mondal
, “
An analytical approach to the effect of viscous dissipation on shear-driven flow between two parallel plates with constant heat flux boundary conditions
,”
Int. J. Eng.
26
,
533
(
2013
).
55.
V.
Pandey
,
G.
Biswas
, and
A.
Dalal
, “
Effect of surface wettability and electric field on transition of film boiling to nucleate boiling
,”
Numer. Heat Transfer, Part A
74
,
1105
1120
(
2018
).
56.
V.
Pandey
,
G.
Biswas
, and
A.
Dalal
, “
Saturated film boiling at various gravity levels under the influence of electrohydrodynamic forces
,”
Phys. Fluids
29
,
032104
(
2017
).
57.
P. K.
Mondal
,
U.
Ghosh
,
A.
Bandopadhyay
,
D.
DasGupta
, and
S.
Chakraborty
, “
Electric-field-driven contact-line dynamics of two immiscible fluids over chemically patterned surfaces in narrow confinements
,”
Phys. Rev. E
88
,
023022
(
2013
).
58.
S. R.
Gorthi
,
P. K.
Mondal
, and
G.
Biswas
, “
Magnetic-field-driven alteration in capillary filling dynamics in a narrow fluidic channel
,”
Phys. Rev. E
96
,
013113
(
2017
).
59.
P. K.
Mondal
,
U.
Ghosh
,
A.
Bandopadhyay
,
D.
DasGupta
, and
S.
Chakraborty
, “
Pulsating electric field modulated contact line dynamics of immiscible binary systems in narrow confinements under an electrical double layer phenomenon
,”
Soft Matter
10
,
8512
(
2014
).
60.
P. K.
Mondal
,
D.
DasGupta
, and
S.
Chakraborty
, “
Rheology-modulated contact line dynamics of an immiscible binary system under electrical double layer phenomena
,”
Soft Matter
11
,
6692
6702
(
2015
).
61.
P. K.
Mondal
,
D.
DasGupta
,
A.
Bandopadhyay
, and
S.
Chakraborty
, “
Pulsating flow driven alteration in moving contact-line dynamics on surfaces with patterned wettability gradients
,”
J. Appl. Phys.
116
,
084302
(
2014
).
62.
P. K.
Mondal
,
D.
DasGupta
,
A.
Bandopadhyay
,
U.
Ghosh
, and
S.
Chakraborty
, “
Contact line dynamics of electroosmotic flows of incompressible binary fluid system with density and viscosity contrasts
,”
Phys. Fluids
27
,
032109
(
2015
).
63.
P. K.
Mondal
,
D.
DasGupta
, and
S.
Chakraborty
, “
Interfacial dynamics of two immiscible fluids in spatially periodic porous media: The role of substrate wettability
,”
Phys. Rev. E
90
,
013003
(
2014
).
64.
D.
DasGupta
,
P. K.
Mondal
, and
S.
Chakraborty
, “
Thermocapillary-actuated contact-line motion of immiscible binary fluids over substrates with patterned wettability in narrow confinement
,”
Phys. Rev. E
90
,
023011
(
2014
).
65.
G.
Kunti
,
P. K.
Mondal
,
A.
Bhattacharya
, and
S.
Chakraborty
, “
Electrothermally modulated contact line dynamics of a binary fluid in a patterned fluidic environment
,”
Phys. Fluids
30
,
092005
(
2018
).
66.
P. K.
Mondal
and
S.
Chaudhry
, “
Effects of gravity on the thermo-hydrodynamics of moving contact lines
,”
Phys. Fluids
30
,
042109
(
2018
).
67.
A.
Rahmat
,
M.
Barigou
, and
A.
Alexiadis
, “
Deformation and rupture of compound cells under shear: A discrete multiphysics study
,”
Phys. Fluids
31
,
051903
(
2019
).
68.
F.
Almasi
,
M. S.
Shadloo
,
A.
Hadjadj
,
M.
Ozbulut
,
N.
Tofighi
, and
M.
Yildiz
, “
Numerical simulations of multi-phase electro-hydrodynamics flows using a simple incompressible smoothed particle hydrodynamics method
,”
Comput. Math. Appl.
(in press) (
2020
).
69.
M. S.
Shadloo
,
A.
Rahmat
,
A.
Karimipour
, and
S.
Wongwises
, “
Estimation of pressure drop of two-phase fluid in horizontal long pipes using artificial neural networks
,”
J. Energy Resour. Technol.
142
,
112110
(
2020
).
You do not currently have access to this content.