Evaporation of drops almost always deposits their suspended particles at the drop edge. The dynamics of this process and the resulting patterns depend upon various parameters related to the liquid, substrate, and particles. An interesting scenario is interactions among the particles leading to inhomogeneous depositions characterized by distinct edge-growth dynamics. Here, we study a more complex system with bacteria inside the evaporating drop. Bacteria interact like sticky particles forming inhomogeneous clusters, however, with edge-growth dynamics as that of non-interacting particles. We hypothesis that this contradicting behavior is due to the increased randomness introduced by bacteria–substrate interactions. Our findings have importance in understanding the patterns and their formation in growth systems of soft matter.

1.
R. D.
Deegan
,
O.
Bakajin
,
T. F.
Dupont
,
G.
Huber
, and
S. R.
Nagel
, “
Capillary flow as the cause of ring stains from dried liquid drops
,”
Nature
389
,
827
(
1997
).
2.
H.
Hu
and
R. G.
Larson
, “
Evaporation of a sessile droplet on a substrate
,”
J. Phys. Chem. B
106
,
1334
(
2002
).
3.
K. N.
Al-Milaji
and
H.
Zhao
, “
New perspective of mitigating the coffee-ring effect: Interfacial assembly
,”
J. Phys. Chem. C
123
,
12029
(
2019
).
4.
D.
Mampallil
and
H. B.
Eral
, “
A review on suppression and utilization of the coffee-ring effect
,”
Adv. Colloid Interface Sci.
252
,
38
(
2018
).
5.
A. G.
Marin
,
H.
Gelderblom
,
D.
Lohse
, and
J. H.
Snoeijer
, “
Order-to-disorder transition in ring-shaped colloidal stains
,”
Phys. Rev. Lett.
107
,
085502
(
2011
).
6.
P. J.
Yunker
,
M. A.
Lohr
,
T.
Still
,
A.
Borodin
,
D. J.
Durian
, and
A. G.
Yodh
, “
Effects of particle shape on growth dynamics at edges of evaporating drops of colloidal suspensions
,”
Phys. Rev. Lett.
110
,
035501
(
2013
).
7.
P. J.
Yunker
,
T.
Still
,
M. A.
Lohr
, and
A. G.
Yodh
, “
Suppression of the coffee-ring effect by shape-dependent capillary interactions
,”
Nature
476
,
308
331
(
2011
).
8.
D. L.
Koch
and
G.
Subramanian
, “
Collective hydrodynamics of swimming microorganisms: Living fluids
,”
Annu. Rev. Fluid Mech.
43
,
637
(
2011
).
9.
K.
Hori
and
S.
Matsumoto
, “
Bacterial adhesion: From mechanism to control
,”
Biochem. Eng. J.
48
,
424
434
(
2010
).
10.
S.
Achinas
,
N.
Charalampogiannis
, and
G. J.
Euverink
, “
A brief recap of microbial adhesion and biofilms
,”
Appl. Sci.
9
,
2801
(
2019
).
11.
W.
Sempels
,
R.
De Dier
,
H.
Mizuno
,
J.
Hofkens
, and
J.
Vermant
, “
Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system
,”
Nat. Commun.
4
,
1757
(
2013
).
12.
T. T.
Nellimoottil
,
P. N.
Rao
,
S. S.
Ghosh
, and
A.
Chattopadhyay
, “
Evaporation-induced patterns from droplets containing motile and nonmotile bacteria
,”
Langmuir
23
,
8655
(
2007
).
13.
D.
Yanni
,
A.
Kalziqi
,
J.
Thomas
,
S. L.
Ng
,
S.
Vivek
,
W. C.
Ratcliff
,
B. K.
Hammer
, and
P. J.
Yunker
, “
Life in the coffee-ring: how evaporation-driven density gradients dictate the outcome of inter-bacterial competition
,” arXiv:1707.03472.
14.
T.
Andac
,
P.
Weigmann
,
S. K. P.
Velu
,
E.
Pinçe
,
G.
Volpe
,
G.
Volpe
, and
A.
Callegari
, “
Active matter alters the growth dynamics of coffee rings
,”
Soft Matter
15
,
1488
(
2019
).
15.
T. V.
Kasyap
,
D. L.
Koch
, and
M.
Wu
, “
Bacterial collective motion near the contact line of an evaporating sessile drop
,”
Phys. Fluids
26
,
111703
(
2014
).
16.
C.
Dombrowski
,
L.
Cisneros
,
S.
Chatkaew
,
R. E.
Goldstein
, and
J. O.
Kessler
, “
Self-concentration and large-scale coherence in bacterial dynamics
,”
Phys. Rev. Lett.
93
,
098103
(
2004
).
17.
M.
Hennes
,
J.
Tailleur
,
G.
Charron
, and
A.
Daerr
, “
Active depinning of bacterial droplets: The collective surfing of Bacillus subtilis
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
5958
5963
(
2017
).
18.
M.
Ranjbaran
and
A. K.
Datta
, “
Retention and infiltration of bacteria on a plant leaf driven by surface water evaporation
,”
Phys. Fluids
31
,
112106
(
2019
).
19.
R. K.
Merton
, “
The Matthew effect in science: The reward and communication systems of science are considered
,”
Science
159
,
56
(
1968
).
20.
J.
Wakita
,
H.
Itoh
,
T.
Matsuyama
, and
M.
Matsushita
, “
Self-affinity for the growing interface of bacterial colonies
,”
J. Phys. Soc. Jpn.
66
,
67
(
1997
).
21.
T.
Sasamoto
and
H.
Spohn
, “
One-dimensional Kardar–Parisi–Zhang equation: an exact solution and its universality
,”
Phys. Rev. Lett.
104
,
230602
(
2010
).
22.
T.
Halpin-Healy
and
K. A.
Takeuchi
, “
A KPZ Cocktail-Shaken, not stirred…
,”
J. Stat. Phys.
160
,
794
(
2015
).
23.
K. A.
Takeuchi
and
M.
Sano
, “
Universal fluctuations of growing interfaces: Evidence in turbulent liquid crystals
,”
Phys. Rev. Lett.
104
,
230601
(
2010
).
24.
M. A. C.
Huergo
,
M. A.
Pasquale
,
A. E.
Bolzán
,
A. J.
Arvia
, and
P. H.
González
, “
Morphology and dynamic scaling analysis of cell colonies with linear growth fronts
,”
Phys. Rev. E
82
,
031903
(
2010
).
25.
M. A. C.
Huergo
,
N. E.
Muzzio
,
M. A.
Pasquale
,
P. H. P.
González
,
A. E.
Bolzán
, and
A. J.
Arvia
, “
Dynamic scaling analysis of two-dimensional cell colony fronts in a gel medium: A biological system approaching a quenched Kardar–Parisi–Zhang universality
,”
Phys. Rev. E
90
,
022706
(
2014
).
26.
M. A. C.
Huergo
,
M. A.
Pasquale
,
P. H.
González
,
A. E.
Bolzán
, and
A. J.
Arvia
, “
Growth dynamics of cancer cell colonies and their comparison with noncancerous cells
,”
Phys. Rev. E
85
,
011918
(
2012
).
27.
M.
Kardar
,
G.
Parisi
, and
Y.-C.
Zhang
, “
Dynamic scaling of growing interfaces
,”
Phys. Rev. Lett.
56
,
889
(
1986
).
28.
H. N.
Kim
,
Y.
Hong
,
I.
Lee
,
S. A.
Bradford
, and
S. L.
Walker
, “
Surface characteristics and adhesion behavior of Escherichia coli O157:H7: Role of extracellular macromolecules
,”
Biomacromolecules
10
,
2556
2564
(
2009
).
29.
S.
Sharma
and
J. C.
Conrad
, “
Attachment from flow of Escherichia coli bacteria onto silanized glass substrates
,”
Langmuir
30
,
11147
11155
(
2014
).
30.
F.
Hamadi
,
H.
Latrache
,
H.
Zahir
,
A.
Elghmari
,
M.
Timinouni
, and
M.
Ellouali
, “
The relation between Escherichia coli surface functional groups’ composition and their physicochemical properties
,”
Braz. J. Microbiol.
39
,
10
15
(
2008
).
31.
S. L.
Walker
,
J. A.
Redman
, and
M.
Elimelech
, “
Role of cell surface lipopolysaccharides in Escherichia coli K12 adhesion and transport
,”
Langmuir
20
,
7736
7746
(
2004
).
32.
H. N.
Dixit
and
G. M.
Homsy
, “
Capillary effects on floating cylindrical particles
,”
Phys. Fluids
24
,
122102
(
2012
).
33.
V. R.
Dugyala
and
M. G.
Basavaraj
, “
Evaporation of sessile drops containing colloidal rods: Coffee-ring and order-disorder transition
,”
J. Phys. Chem. B
119
,
3860
3867
(
2015
).
34.
A.
Susarrey-Arce
,
A.
Marin
,
A.
Massey
,
A.
Oknianska
,
Y.
Díaz-Fernandez
,
J. F.
Hernández-Sánchez
,
E.
Griffiths
,
J. G. E.
Gardeniers
,
J. H.
Snoeijer
,
D.
Lohse
, and
R.
Raval
, “
Pattern formation by Staphylococcus epidermidis via droplet evaporation on micropillars arrays at a surface
,”
Langmuir
32
,
7159
(
2016
).
35.
T. J.
Oliveira
and
F. D. A.
Aarão Reis
, “
Simulating the initial growth of a deposit from colloidal suspensions
,”
J. Stat. Mech.: Theory Exp.
2014
,
P09006
.
36.
M.
Eden
, “
A two-dimensional growth process
,” in
Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Contributions to Biology and Problems of Medicine
(
University of California Press
,
Berkeley
,
1961
), Vol. 4, pp.
223
239
.
37.
S. G.
Alves
,
T. J.
Oliveira
, and
S. C.
Ferreira
, “
Universal fluctuations in radial growth models belonging to the KPZ universality class
,”
Europhys. Lett.
96
,
48003
(
2011
).
38.
H.
Fujikawa
and
M.
Matsushita
, “
Fractal growth of Bacillus subtilis on agar plates
,”
J. Phys. Soc. Jpn.
58
,
3875
(
1989
).
39.
T.
Vicsek
,
M.
Cserző
, and
V. K.
Horváth
, “
Self-affine growth of bacterial colonies
,”
Physica A
167
,
315
(
1990
).
40.
A.
Brú
,
J. M.
Pastor
,
I.
Fernaud
,
I.
Brú
,
S.
Melle
, and
C.
Berenguer
, “
Super-rough dynamics on tumor growth
,”
Phys. Rev. Lett.
81
,
4008
(
1998
).
41.
S. N.
Santalla
,
J.
Rodríguez-Laguna
,
J. P.
Abad
,
I.
Marín
,
M. M.
Espinosa
,
J. M.
García
,
L.
Vázquez
, and
R.
Cuerno
, “
Nonuniversality of front fluctuations for compact colonies of nonmotile bacteria
,”
Phys. Rev. E
98
,
012407
(
2018
).
42.
S. N.
Santalla
and
S. C.
Ferreira
, “
Eden model with nonlocal growth rules and kinetic roughening in biological systems
,”
Phys. Rev. E
98
,
022405
(
2018
).
You do not currently have access to this content.