A unified simplified multiphase lattice Boltzmann method (USMLBM) is constructed in this work for simulating complex multiphase ferrofluid flows with large density and viscosity ratios. In USMLBM, the Navier–Stokes equations, the Poisson equation of the magnetic potential, and the phase-field equation are utilized as the ferrohydrodynamics behavior modeling and interface tracking algorithm. Solutions of the macroscopic governing equations are reconstructed with the lattice Boltzmann framework and resolved in a predictor–corrector scheme. Various benchmark tests demonstrate the efficiency and accuracy of USMLBM in simulating multiphase ferrofluid flows. We further adopt USMLBM to analyze in detail the mechanisms of bubble merging inside a ferrofluid under a uniform external magnetic field. The numerical results indicate that the bubbles tend to move toward each other and further merge together, even for a large initial separation between the bubbles. Due to complex interaction between the bubbles and the ferrofluid during the magnetophoretic acceleration process, the nonlinear effect on bubble merging is observed when the initial separation increases. Moreover, at a larger initial separation, the shape of bubbles seems to be not sensitive to the initial separation.

1.
P. A.
Voltairas
,
D. I.
Fotiadis
, and
L. K.
Michalis
, “
Hydrodynamics of magnetic drug targeting
,”
J. Biomech.
35
,
813
821
(
2002
).
2.
T. R.
Polte
,
M.
Shen
,
J.
Karavitis
,
M.
Montoya
,
J.
Pendse
,
S.
Xia
,
E.
Mazur
, and
D. E.
Ingber
, “
Nanostructured magnetizable materials that switch cells between life and death
,”
Biomaterials
28
,
2783
2790
(
2007
).
3.
S.-H.
Tan
,
N.-T.
Nguyen
,
Y.-L.
Kang
, and
T.
Goo
, “
Formation and manipulation of ferrofluid droplets at a microfluidic T-junction
,”
J. Micromech. Microeng.
20
,
045004
(
2010
).
4.
B.
Gleich
and
J.
Weizenecker
, “
Tomographic imaging using the nonlinear response of magnetic particles
,”
Nature
435
,
1214
1217
(
2005
).
5.
B.
Kozissnik
and
J.
Dobson
, “
Biomedical applications of mesoscale magnetic particles
,”
MRS Bull.
38
,
927
932
(
2013
).
6.
B.
Berkovski
and
V.
Bashtovoy
,
Magnetic Fluids and Applications Handbook
(
Begel House
,
New York
,
1996
).
7.
C.-Y.
Chen
,
H.-C.
Hsueh
,
S.-Y.
Wang
, and
Y.-H.
Li
, “
Self-assembly and novel planetary motion of ferrofluid drops in a rotational magnetic field
,”
Microfluidics Nanofluidics
18
,
795
806
(
2015
).
8.
L. N.
Joseph
and
R. E.
Rosensweig
, “
Ferrohydrodynamics
,”
Phys. Fluids
7
,
1927
(
1964
).
9.
H.
Ki
, “
Level set method for two-phase incompressible flows under magnetic fields
,”
Comput. Phys. Commun.
181
,
999
1007
(
2010
).
10.
M. S.
Krakov
, “
Mixing of miscible magnetic and non-magnetic fluids with a rotating magnetic field
,”
J. Magn. Magn. Mater.
498
,
166186
(
2020
).
11.
M.
Qiu
,
S.
Afkhami
,
C.-Y.
Chen
, and
J. J.
Feng
, “
Interaction of a pair of ferrofluid drops in a rotating magnetic field
,”
J. Fluid Mech.
846
,
121
142
(
2018
).
12.
H.
Yamasaki
and
H.
Yamaguchi
, “
Numerical simulation of bubble deformation in magnetic fluids by finite volume method
,”
J. Magn. Magn. Mater.
431
,
164
168
(
2017
).
13.
P.
Rowghanian
,
C. D.
Meinhart
, and
O.
Campàs
, “
Dynamics of ferrofluid drop deformations under spatially uniform magnetic fields
,”
J. Fluid Mech.
802
,
245
262
(
2016
).
14.
C.
Rigoni
,
J.
Fresnais
,
D.
Talbot
, and
R.
Massar
, “M
magnetic field driven deformation, attraction and coalescence of non-magnetic aqueous droplets in an oil based ferrofluid
,”
Langmuir
36
(
18
),
5048
5057
(
2020
).
15.
M.
Perzynski
,
X.
Niu
,
P.
Yu
,
Q.
Li
,
Y.
Li
,
X.
Li
, and
K.
Adnan
, “
Numerical investigation of magnetic-field induced self-assembly of nonmagnetic particles in magnetic fluids
,”
J. Fluid Struct.
97
,
103008
(
2020
).
16.
S.
Chen
,
H.
Chen
,
D.
Martnez
, and
W.
Matthaeus
, “
Lattice Boltzmann model for simulation of magnetohydrodynamics
,”
Phys. Rev. Lett.
67
,
3776
(
1991
).
17.
V.
Sofonea
, “
Lattice Boltzmann approach to collective-particle interactions in magnetic fluids
,”
Europhys. Lett.
25
,
385
(
1994
).
18.
X.-D.
Niu
,
H.
Yamaguchi
, and
K.
Yoshikawa
, “
Lattice Boltzmann model for simulating temperature-sensitive ferrofluids
,”
Phys. Rev. E
79
,
046713
(
2009
).
19.
H.
Wang
,
X.
Yuan
,
H.
Liang
,
Z.
Chai
, and
B.
Shi
, “
A brief review of the phase-field-based lattice Boltzmann method for multiphase flows
,”
Capillarity
2
,
33
52
(
2019
).
20.
X.
Shan
and
H.
Chen
, “
Lattice Boltzmann model for simulating flows with multiple phases and components
,”
Phys. Rev. E.
47
,
1815
(
1993
).
21.
M. R.
Swift
,
W. R.
Osborn
, and
J. M.
Yeomans
, “
Lattice Boltzmann simulation of nonideal fluids
,”
Phys. Rev. Lett.
75
,
830
(
1995
).
22.
X.
He
,
S.
Chen
, and
R.
Zhang
, “
A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability
,”
J. Comput. Phys.
152
,
642
663
(
1999
).
23.
A.
Ghaderi
,
M. H.
Kayhani
,
M.
Nazari
, and
K.
Fallah
, “
Drop formation of ferrofluid at co-flowing microcahnnel under uniform magnetic field
,”
Eur. J. Mech. B: Fluids
67
,
87
96
(
2018
).
24.
A.
Ghaderi
,
M. H.
Kayhani
, and
M.
Nazari
, “
Numerical investigation on falling ferrofluid droplet under uniform magnetic field
,”
Eur. J. Mech. B: Fluids
72
,
1
11
(
2018
).
25.
Y.
Ido
and
M.
Sasaki
, “
Three dimensional lattice Boltzmann method for magnetic fluids in the presence of weak magnetic field
,”
Int. J. Appl. Electromagn. Mech.
33
,
1671
1676
(
2010
).
26.
Y.
Hu
,
D.-C.
Li
, and
X.-D.
Niu
, “
Phase-field-based lattice Boltzmann model for multiphase ferrofluid flows
,”
Phys. Rev. E
98
,
033301
(
2018
).
27.
G.
Falcucci
, “
Lattice Boltzmann investigation of ferrofluid jet evolution in external magnetic fields
,”
AIP Conf. Proc.
1648
,
570022
(
2015
).
28.
Y.
Ido
,
H.
Sumiyoshi
, and
H.
Tsutsumi
, “
Simulations of behavior of magnetic particles in magnetic functional fluids using a hybrid method of lattice Boltzmann method, immersed boundary method and discrete particle method
,”
Comput. Fluids
142
,
86
95
(
2017
).
29.
Z.
Chen
,
C.
Shu
,
Y.
Wang
,
L. M.
Yang
, and
D.
Tan
, “
A simplified lattice Boltzmann method without evolution of distribution function
,”
Adv. Appl. Math. Mech.
9
,
1
22
(
2017
).
30.
Z.
Chen
,
C.
Shu
,
D.
Tan
, and
C.
Wu
, “
On improvements of simplified and highly stable lattice Boltzmann method: Formulations, boundary treatment, and stability analysis
,”
Int. J. Numer. Methods Fluids
87
,
161
(
2018
).
31.
Z.
Chen
,
C.
Shu
,
D.
Tan
,
X.-D.
Niu
, and
Q.-Z.
Li
, “
Simplified multiphase lattice Boltzmann method for simulating multiphase flows with large density ratios and complex interfaces
,”
Phys. Rev. E
98
,
063314
(
2018
).
32.
J. D.
Sterling
and
S.
Chen
, “
Stability analysis of lattice Boltzmann methods
,”
J. Comput. Phys.
123
,
196
(
1996
).
33.
A.
Khan
,
X.-D.
Niu
,
Q.-Z.
Li
,
Y.
Li
,
D.
Li
, and
H.
Yamaguchi
, “
Dynamic study of ferrodroplet and bubbles merging in ferrofluid by a simplified multiphase lattice Boltzmann method
,”
J. Magn. Magn. Mater.
495
,
165869
(
2020
).
34.
R. E.
Rosensweig
,
Ferrohydrodynamics
(
Cambridge University Press
,
Cambridge
,
1985
).
35.
A. O.
Ivanov
and
O. B.
Kuznetsova
, “
Nonmonotonic field-dependent magnetic permeability of a paramagnetic ferrofluid emulsion
,”
Phys. Rev. E
85
,
041405
(
2012
).
36.
S.
Afkhami
,
A. J.
Tyler
,
Y.
Renardy
,
M.
Renardy
,
T. G.
St. Pierre
,
R. C.
Woodward
, and
J. S.
Riffle
, “
Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields
,”
J. Fluid Mech.
663
,
358
384
(
2010
).
37.
Y. H.
Qian
,
D.
D’Humières
, and
P.
Lallemand
, “
Lattice BGK models for Navier-Stokes equation
,”
Europhys. Lett.
17
(
6
),
479
484
(
1992
).
38.
T.
Inamuro
,
M.
Yoshino
, and
F.
Ogino
, “
Accuracy of the lattice Boltzmann method for small Knudsen number with finite Reynolds number
,”
Phys. Fluids
9
,
3535
3542
(
1997
).
39.
J.
Kim
and
P.
Moin
, “
Application of a fractional-step method to incompressible Navier-Stokes equations
,”
J. Comput. Phys.
59
,
308
323
(
1985
).
40.
C.
Shu
,
Y.
Wang
,
C. J.
Teo
, and
J.
Wu
, “
Development of lattice Boltzmann flux solver for simulation of incompressible flows
,”
Adv. Appl. Math. Mech.
6
,
436
(
2014
).
41.
J. J.
Huang
,
C.
Shu
, and
Y. T.
Chew
, “
Mobility-dependent bifurcations in capillarity-driven two-phase fluid systems by using a lattice Boltzmann phase-field model
,”
Int. J. Numer. Methods Fluids
60
,
203
(
2009
).
42.
T.
Lee
and
C.-L.
Lin
, “
A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio
,”
J. Comput. Phys.
206
,
16
(
2005
).
43.
Q. Z.
Li
,
Z. L.
Lu
,
D.
Zhou
,
X. D.
Niu
,
T. Q.
Guo
, and
B. C.
Du
, “
A high-order phase-field based lattice Boltzmann model for simulating complex multiphase flows with large density ratios
,”
Int. J. Numer. Methods Fluids
2020
,
1
21
.
44.
X.-D.
Niu
,
Y.
Li
,
Y.-R.
Ma
,
M.-F.
Chen
,
X.
Li
, and
Q.-Z.
Li
, “
A mass-conserving multiphase lattice Boltzmann model for simulation of multiphase flows
,”
Phys. Fluids
30
,
013302
(
2018
).
45.
Y.
Wang
,
C.
Shu
,
J. Y.
Shao
,
J.
Wu
, and
X. D.
Niu
, “
A mass-conserved diffuse interface method and its application for incompressible multiphase flows with large density ratio
,”
J. Comput. Phys.
290
,
336
(
2015
).
46.
R.
Seeman
,
M.
Brinkman
,
T.
Pfohl
, and
S.
Herminghaus
, “
Droplet based microfluidics
,”
Rep. Prog. Phys.
75
,
016601
(
2012
).
47.
G.
Frasca
,
V.
Du
,
J.-C.
Bacri
,
F.
Gazeau
,
C.
Gay
, and
C.
Wilhelm
, “
Magnetically shaped cell aggregates: From granular to contractile materials
,”
Soft Matter
10
,
5045
5054
(
2014
).
48.
J. V. I.
Timonen
,
M.
Latikka
,
L.
Leibler
,
R. H. A.
Ras
, and
O.
Ikkala
, “
Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces
,”
Science
341
(
6143
),
253
257
(
2013
).
49.
J.
Erdmanis
,
G.
Kitenbergs
,
R.
Perzynski
, and
A.
Cēbers
, “
Magnetic micro-droplet in rotating field: Numerical simulation and comparison with experiment
,”
J. Fluid Mech.
821
,
266
295
(
2017
).
50.
C.
Flament
,
S.
Lacis
,
J.-C.
Bacri
,
A.
Cebers
,
S.
Neveu
, and
R.
Perzynski
, “
Measurements of ferrofluid surface tension in confined geometry
,”
Phys. Rev. E
53
(
5
),
4801
4806
(
1996
).
51.
H. W.
Zheng
,
C.
Shu
, and
Y. T.
Chew
, “
A lattice Boltzmann model for multiphase flows with large density ratio
,”
J. Comput. Phys.
218
,
353
(
2006
).
52.
W. K.
Lee
,
R.
Scardovelli
,
A. D.
Trubatch
, and
P.
Yecko
, “
Numerical, experimental, and theoretical investigation of bubble aggregation and deformation in magnetic fluids
,”
Phys. Rev. E
82
,
016302
(
2010
).
53.
Y.
Li
,
X.-D.
Niu
,
A.
Khan
,
D.-C.
Li
, and
H.
Yamaguchi
, “
A numerical investigation of dynamics of bubbly flow in a ferrofluid by a self-correcting procedure-based lattice Boltzmann flux solver
,”
Phys. Fluids
31
,
082107
(
2019
).
You do not currently have access to this content.