In the present work, the power-law fluid flow in a channel partially filled with a porous medium is numerically investigated using the lattice Boltzmann method (LBM). The porous domain, placed in the lower half of the channel, is represented according to a heterogeneous approach by a matrix of solid square disconnected blocks. The apparent viscosity of the power-law fluid is computed by locally varying the LBM relaxation factor. The results show the influence of geometry (porosity, number of obstacles, and hydraulic diameter), inertia (Reynolds number), and fluid properties (power-law index) over the partially porous-to-impermeable channel friction factor ratio. In general, the higher the porosity and the lower the number of obstacles, Reynolds number, and power-law index, the lower the friction factor. Finally, a correlation for the friction factor ratio as a function of the free region hydraulic diameter, permeability, and power-law index is presented for a specific channel configuration.

1.
V.
Gurau
and
J. A.
Mann
, “
A critical overview of computational fluid dynamics multiphase models for proton exchange membrane fuel cells
,”
SIAM J. Appl. Math.
70
,
410
454
(
2009
).
2.
I. M. R.
Sadiq
and
R.
Usha
, “
Effect of permeability on the instability of a non-Newtonian film down a porous inclined plane
,”
J. Non-Newtonian Fluid Mech.
165
,
1171
1188
(
2010
).
3.
Z.
Wu
and
P.
Mirbod
, “
Experimental analysis of the flow near the boundary of random porous media
,”
Phys. Fluids
30
,
047103
(
2018
).
4.
A.
Tiwari
and
S. S.
Chauhan
, “
Effect of varying viscosity on two-fluid model of pulsatile blood flow through porous blood vessels: A comparative study
,”
Microvasc. Res.
123
,
99
110
(
2019
).
5.
D.
Landa-Marbán
,
N.
Liu
,
I. S.
Pop
,
K.
Kumar
,
P.
Pettersson
,
G.
Bødtker
,
T.
Skauge
, and
F. A.
Radu
, “
A pore-scale model for permeable biofilm: Numerical simulations and laboratory experiments
,”
Transp. Porous Media
127
,
643
660
(
2019
).
6.
E.
Shahraeeni
,
P.
Lehmann
, and
D.
Or
, “
Coupling of evaporative fluxes from drying porous surfaces with air boundary layer: Characteristics of evaporation from discrete pores
,”
Water Resour. Res.
48
,
W09525
, (
2012
).
7.
M. L.
Martins-Costa
,
J. A. P.
Angulo
, and
H. S.
da Costa Mattos
, “
Power-law fluid flows in channels with a permeable wall
,”
J. Porous Media
16
,
647
661
(
2013
).
8.
W.
Dahmen
,
T.
Gotzen
,
S.
Müller
, and
M.
Rom
, “
Numerical simulation of transpiration cooling through porous material
,”
Int. J. Numer. Methods Fluids
76
,
331
365
(
2014
).
9.
A. A.
Merrikh
,
J. L.
Lage
, and
A. A.
Mohamad
, “
Natural convection in nonhomogeneous heat-generating media: Comparison of continuum and porous-continuum models
,”
J. Porous Media
8
,
149
163
(
2005
).
10.
T.
Carraro
,
E.
Marušić-Paloka
, and
A.
Mikelić
, “
Effective pressure boundary condition for the filtration through porous medium via homogenization
,”
Nonlinear Anal.: Real World Appl.
44
,
149
172
(
2018
).
11.
A.
Terzis
,
I.
Zarikos
,
K.
Weishaupt
,
G.
Yang
,
X.
Chu
,
R.
Helmig
, and
B.
Weigand
, “
Microscopic velocity field measurements inside a regular porous medium adjacent to a low Reynolds number channel flow
,”
Phys. Fluids
31
,
042001
(
2019
).
12.
G.
Yang
,
E.
Coltman
,
K.
Weishaupt
,
A.
Terzis
,
R.
Helmig
, and
B.
Weigand
, “
On the Beavers-Joseph interface condition for non-parallel coupled channel flow over a porous structure at high Reynolds numbers
,”
Transp. Porous Media
128
,
431
457
(
2019
).
13.
D.
Jamet
,
M.
Chandesris
, and
B.
Goyeau
, “
On the equivalence of the discontinuous one- and two-domain approaches for the modeling of transport phenomena at a fluid/porous interface
,”
Transp. Porous Media
78
,
403
418
(
2009
).
14.
S.
Whitaker
,
The Method of Volume Averaging, Theory and Applications of Transport in Porous Media
(
Springer Netherlands
,
Dordrecht
,
1999
), Vol. 13.
15.
J. A.
Ochoa-Tapia
and
S.
Whitaker
, “
Momentum transfer at the boundary between a porous medium and a homogeneous fluid. I. Theoretical development
,”
Int. J. Heat Mass Transfer
38
,
2635
2646
(
1995
).
16.
J. A.
Ochoa-Tapia
and
S.
Whitaker
, “
Momentum transfer at the boundary between a porous medium and a homogeneous fluid. II. Comparison with experiment
,”
Int. J. Heat Mass Transfer
38
,
2647
2655
(
1995
).
17.
F. J.
Valdés-Parada
,
C. G.
Aguilar-Madera
,
J. A.
Ochoa-Tapia
, and
B.
Goyeau
, “
Velocity and stress jump conditions between a porous medium and a fluid
,”
Adv. Water Resour.
62
,
327
339
(
2013
).
18.
G. S.
Beavers
and
D. D.
Joseph
, “
Boundary conditions at a naturally permeable wall
,”
J. Fluid Mech.
30
,
197
207
(
1967
).
19.
G. S.
Beavers
,
E. M.
Sparrow
, and
R. A.
Magnuson
, “
Experiments on coupled parallel flows in a channel and a bounding porous medium
,”
J. Basic Eng.
92
,
843
848
(
1970
).
20.
G.
Neale
and
W.
Nader
, “
Practical significance of Brinkman’s extension of Darcy’s law: Coupled parallel flows within a channel and a bounding porous medium
,”
Can. J. Chem. Eng.
52
,
475
478
(
1974
).
21.
K.
Vafai
and
S. J.
Kim
, “
Fluid mechanics of the interface region between a porous medium and a fluid layer—An exact solution
,”
Int. J. Heat Fluid Flow
11
,
254
256
(
1990
).
22.
A.
D’Hueppe
,
M.
Chandesris
,
D.
Jamet
, and
B.
Goyeau
, “
Boundary conditions at a fluid-porous interface for a convective heat transfer problem: Analysis of the jump relations
,”
Int. J. Heat Mass Transfer
54
,
3683
3693
(
2011
).
23.
C. G.
Aguilar-Madera
,
F. J.
Valdés-Parada
,
B.
Goyeau
, and
J.
Alberto Ochoa-Tapia
, “
One-domain approach for heat transfer between a porous medium and a fluid
,”
Int. J. Heat Mass Transfer
54
,
2089
2099
(
2011
).
24.
M.
El Jarroudi
and
M.
Er-Riani
, “
Homogenization of a two-phase incompressible fluid in crossflow filtration through a porous medium
,”
Math. Models Methods Appl. Sci.
41
,
281
302
(
2018
).
25.
M.
Sahraoui
and
M.
Kaviany
, “
Slip and no-slip velocity boundary conditions at interface of porous, plain media
,”
Int. J. Heat Mass Transfer
35
,
927
(
1992
).
26.
D. F.
James
and
A. M. J.
Davis
, “
Flow at the interface of a model fibrous porous medium
,”
J. Fluid Mech.
426
,
47
72
(
2001
).
27.
A.
Nabovati
and
A. C. M.
Sousa
, “
Fluid flow simulation at open-porous medium interface using the lattice Boltzmann method
,”
Int. J. Numer. Methods Fluids
56
,
1449
1456
(
2008
).
28.
A.
Nabovati
and
C. H.
Amon
, “
Hydrodynamic boundary condition at open-porous interface: A pore-level lattice Boltzmann study
,”
Transp. Porous Media
96
,
83
95
(
2013
).
29.
M.
Chandesris
,
A.
D’Hueppe
,
B.
Mathieu
,
D.
Jamet
, and
B.
Goyeau
, “
Direct numerical simulation of turbulent heat transfer in a fluid-porous domain
,”
Phys. Fluids
25
,
125110
(
2013
).
30.
C.
Guo
,
Y.
Li
,
X.
Nian
,
M.
Xu
,
H.
Liu
, and
Y.
Wang
, “
Experimental study on the slip velocity of turbulent flow over and within porous media
,”
Phys. Fluids
32
,
015111
(
2020
).
31.
Y.-L.
Chen
,
X.-D.
Cao
, and
K.-Q.
Zhu
, “
A gray lattice Boltzmann model for power-law fluid and its application in the study of slip velocity at porous interface
,”
J. Non-Newtonian Fluid Mech.
159
,
130
136
(
2009
).
32.
V. J.
Ervin
,
E. W.
Jenkins
, and
S.
Sun
, “
Coupled generalized nonlinear Stokes flow with flow through a porous medium
,”
SIAM J. Numer. Anal.
47
,
929
952
(
2009
).
33.
M. A. A.
Mahmoud
, “
Slip velocity effect on a non-Newtonian power-law fluid over a moving permeable surface with heat generation
,”
Math. Comput. Modell.
54
,
1228
1237
(
2011
).
34.
R. A.
Silva
,
M.
Assato
, and
M. J. S.
de Lemos
, “
Mathematical modeling and numerical results of power-law fluid flow over a finite porous medium
,”
Int. J. Therm. Sci.
100
,
126
137
(
2016
).
35.
N. S.
Chemloul
, “
Analytical study of Bingham fluid flow through a conical tube
,”
Mechanika
19
,
665
670
(
2013
).
36.
K.
Avinash
,
J.
Ananda Rao
,
Y. V. K.
Ravi Kumar
, and
S.
Sreenadh
, “
Bingham fluid flow through a tapered tube with permeable wall
,”
J. Appl. Fluid Mech.
6
,
143
148
(
2013
).
37.
M.
Cloete
,
G. J. F.
Smit
, and
M. F.
Maritz
, “
External boundary effects on the velocity profile for generalized Newtonian fluid flow inside a homogeneous porous medium
,”
J. Non-Newtonian Fluid Mech.
215
,
40
52
(
2015
).
38.
P. D.
Ariel
, “
On exact solutions of flow problems of a second grade fluid through two parallel porous walls
,”
Int. J. Eng. Sci.
40
,
913
941
(
2002
).
39.
E. F.
El-Shehawy
,
N. T.
El-Dabe
, and
I. M.
El-Desoky
, “
Slip effects on the peristaltic flow of a non-Newtonian Maxwellian fluid
,”
Acta Mech.
186
,
141
159
(
2006
).
40.
K. B.
Lakshmi
,
G. S. S.
Raju
, and
N. V. R. V.
Prasad
, “
Unsteady MHD flow of a non-Newtonian fluid down and open inclined channel with naturally permeable bed
,”
Int. J. Fluids Eng.
5
,
57
76
(
2013
).
41.
R.
Bird
,
R.
Armstrong
, and
O.
Hassanger
,
Fluid Mechanics, Vol. 1: Dynamics of Polymeric Liquids
(
Wiley
,
New York
,
1987
).
42.
R. L.
Thompson
and
E. J.
Soares
, “
Viscoplastic dimensionless numbers
,”
J. Non-Newtonian Fluid Mech.
238
,
57
64
(
2016
).
43.
S.
Chen
and
G. D.
Doolen
, “
Lattice Boltzmann method for fluid flows
,”
Annu. Rev. Fluid Mech.
30
,
329
364
(
1998
).
44.
P. L.
Bhatnagar
,
E. P.
Gross
, and
M.
Krook
, “
A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems
,”
Phys. Rev.
94
,
511
(
1954
).
45.
X.
He
and
L.-S.
Luo
, “
Lattice Boltzmann model for the incompressible Navier-Stokes equation
,”
J. Stat. Phys.
88
,
927
944
(
1997
).
46.
S.
Chapman
and
T. G.
Cowling
,
The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases
(
Cambridge Mathematical Library
,
1970
).
47.
T.
Krüger
,
F.
Varnik
, and
D.
Raabe
, “
Shear stress in lattice Boltzmann simulations
,”
Phys. Rev. E
79
,
046704
(
2009
).
48.
Z.
Chai
and
T.
Zhao
, “
Effect of the forcing term in the multiple-relaxation-time lattice Boltzmann equation on the shear stress or the strain rate tensor
,”
Phys. Rev. E
86
,
016705
(
2012
).
49.
Z.
Guo
and
C.
Shu
,
Lattice Boltzmann Method and Its Applications in Engineering
(
World Scientific
,
2013
), Vol. 3.
50.
Q.
Liao
and
T.-C.
Jen
, “
A new pressure boundary condition of lattice Boltzmann method (LBM) for fully developed pressure-driven periodic incompressible fluid flow
,” in
Proceedings of International Mechanical Engineering Congress and Exposition (IMECE 2008)
(
ASME
,
2008
), pp.
1
8
.
51.
S.
Succi
,
The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond
(
Oxford University Press
,
2001
).
52.
A.
Fadili
,
P. M. J.
Tardy
, and
J. R.
Anthony Pearson
, “
A 3D filtration law for power-law fluids in heterogeneous porous media
,”
J. Non-Newtonian Fluid Mech.
106
,
121
146
(
2002
).
53.
C. W.
Macosko
,
Rheology: Principles, Measurements, and Applications
(
Wiley
,
New York
,
1994
).
54.
J. L.
Lage
, “
The fundamental theory of flow through permeable media: From Darcy to turbulence
,” in
Transport Phenomena in Porous Media
, edited by
D. B.
Inghan
and
I.
Pop
(
Pergamon
,
New York
,
1998
), pp.
1
30
.
55.
B.
Goyeau
,
D.
Lhuillier
,
D.
Gobin
, and
M. G.
Velarde
, “
Momentum transport at a fluid-porous interface
,”
Int. J. Heat Mass Transfer
46
,
4071
4081
(
2003
).
You do not currently have access to this content.