We suggest several reciprocal swimming mechanisms that lead to locomotion only in viscoelastic fluids. In the first situation, we consider a three-sphere microswimmer with a difference in oscillation amplitudes for the two arms. In the second situation, we consider a three-sphere microswimmer in which one of the frequencies of the arm motion is twice as large as the other one. In the third situation, we consider a two-sphere microswimmer with a difference in size for the two spheres. In all these three cases, the average velocity is proportional to the imaginary part of the complex shear viscosity of a surrounding viscoelastic medium. We show that it is essential for a micromachine to break its structural symmetry in order to swim in a viscoelastic fluid by performing reciprocal body motions.

1.
E.
Lauga
and
T. R.
Powers
, “
The hydrodynamics of swimming microorganisms
,”
Rep. Prog. Phys.
72
,
096601
(
2009
).
2.
E. M.
Purcell
, “
The efficiency of propulsion by a rotating flagellum
,”
Proc. Natl. Acad. Sci. U. S. A.
94
,
11307
(
1997
).
3.
E.
Lauga
, “
Life around the scallop theorem
,”
Soft Matter
7
,
3060
(
2011
).
4.
K.
Ishimoto
and
M.
Yamada
, “
A coordinate-based proof of the scallop theorem
,”
SIAM J. Appl. Math.
72
,
1686
(
2012
).
5.
A.
Najafi
and
R.
Golestanian
, “
Simple swimmer at low Reynolds number: Three linked spheres
,”
Phys. Rev. E
69
,
062901
(
2004
).
6.
R.
Golestanian
and
A.
Ajdari
, “
Analytic results for the three-sphere swimmer at low Reynolds number
,”
Phys. Rev. E
77
,
036308
(
2008
).
7.
M.
Leoni
,
J.
Kotar
,
B.
Bassetti
,
P.
Cicuta
, and
M. C.
Lagomarsino
, “
A basic swimmer at low Reynolds number
,”
Soft Matter
5
,
472
(
2009
).
8.
G.
Grosjean
,
M.
Hubert
,
G.
Lagubeau
, and
N.
Vandewalle
, “
Realization of the Najafi–Golestanian microswimmer
,”
Phys. Rev. E
94
,
021101(R)
(
2016
).
9.
G.
Grosjean
,
M.
Hubert
, and
N.
Vandewalle
, “
Magnetocapillary self-assemblies: Locomotion and micromanipulation along a liquid interface
,”
Adv. Colloid Interface Sci.
255
,
84
(
2018
).
10.
F.
Box
,
E.
Han
,
C. R.
Tipton
, and
T.
Mullin
, “
On the motion of linked spheres in a Stokes flow
,”
Exp. Fluids
58
,
29
(
2017
).
11.
H. C.
Fu
,
T. R.
Powers
, and
C. W.
Wolgemuth
, “
Theory of swimming filaments in viscoelastic media
,”
Phys. Rev. Lett.
99
,
258101
(
2007
).
12.
H. C.
Fu
,
C. W.
Wolgemuth
, and
T. R.
Powers
, “
Swimming speeds of filaments in nonlinearly viscoelastic fluids
,”
Phys. Fluids
21
,
033102
(
2009
).
13.
E.
Lauga
, “
Life at high Deborah number
,”
Europhys. Lett.
86
,
64001
(
2009
).
14.
J.
Teran
,
L.
Fauci
, and
M.
Shelley
, “
Viscoelastic fluid response can increase the speed and efficiency of a free swimmer
,”
Phys. Rev. Lett.
104
,
038101
(
2010
).
15.
M. P.
Curtis
and
E. A.
Gaffney
, “
Three-sphere swimmer in a nonlinear viscoelastic medium
,”
Phys. Rev. E
87
,
043006
(
2013
).
16.
T.
Qiu
,
T.-C.
Lee
,
A. G.
Mark
,
K. I.
Morozov
,
R.
Munster
,
O.
Mierka
,
S.
Turek
,
A. M.
Leshansky
, and
P.
Fischer
, “
Swimming by reciprocal motion at low Reynolds number
,”
Nat. Commun.
5
,
5119
(
2014
).
17.
K.
Ishimoto
and
E. A.
Gaffney
, “
Boundary element methods for particles and microswimmers in a linear viscoelastic fluid
,”
J. Fluid Mech.
831
,
228
(
2017
).
18.
C.
Datt
,
B.
Nasouri
, and
G. J.
Elfring
, “
Two-sphere swimmers in viscoelastic fluids
,”
Phys. Rev. Fluids
3
,
123301
(
2018
).
19.
K.
Yasuda
,
R.
Okamoto
, and
S.
Komura
, “
Swimmer-microrheology
,”
J. Phys. Soc. Jpn.
86
,
043801
(
2017
).
20.
K.
Yasuda
,
R.
Okamoto
, and
S.
Komura
, “
A three-sphere microswimmer in a structured fluid
,”
Europhys. Lett.
123
,
34002
(
2018
).
21.
T. A.
Witten
and
P.
Pincus
,
Structured Fluids
(
Oxford University Press
,
Oxford
,
2004
).
22.
R. G.
Larson
,
The Structure and Rheology of Complex Fluids
(
Oxford University Press
,
Oxford
,
1999
).
23.
K.
Yasuda
,
Y.
Hosaka
,
M.
Kuroda
,
R.
Okamoto
, and
S.
Komura
, “
Elastic three-sphere microswimmer in a viscous fluid
,”
J. Phys. Soc. Jpn.
86
,
093801
(
2017
).
24.
M.
Kuroda
,
K.
Yasuda
, and
S.
Komura
, “
Hydrodynamic interaction between two elastic microswimmers
,”
J. Phys. Soc. Jpn.
88
,
054804
(
2019
).
25.
Y.
Hosaka
,
K.
Yasuda
,
I.
Sou
,
R.
Okamoto
, and
S.
Komura
, “
Thermally driven elastic micromachines
,”
J. Phys. Soc. Jpn.
86
,
113801
(
2017
).
26.
I.
Sou
,
Y.
Hosaka
,
K.
Yasuda
, and
S.
Komura
, “
Nonequilibrium probability flux of a thermally driven micromachine
,”
Phys. Rev. E
100
,
022607
(
2019
).
27.
R.
Granek
, “
Membrane surrounded by viscoelastic continuous media: Anomalous diffusion and linear response to force
,”
Soft Matter
7
,
5281
(
2011
).
28.
F.
Gittes
,
B.
Schnurr
,
P. D.
Olmsted
,
F. C.
MacKintosh
, and
C. F.
Schmidt
, “
Microscopic viscoelasticity: Shear moduli of soft materials determined from thermal fluctuations
,”
Phys. Rev. Lett.
79
,
3286
(
1997
).
29.
B.
Schnurr
,
F.
Gittes
,
F. C.
MacKintosh
, and
C. F.
Schmidt
, “
Determining microscopic viscoelasticity in flexible and semiflexible polymer networks from thermal fluctuations
,”
Macromolecules
30
,
7781
(
1997
).
30.
D. T. N.
Chen
,
Q.
Wen
,
P. A.
Janmey
,
J. C.
Crocker
, and
A. G.
Yodh
, “
Rheology of soft materials
,”
Annu. Rev. Condens. Matter Phys.
1
,
301
(
2010
).
31.
T. M.
Squires
and
T. G.
Mason
, “
Fluid mechanics of microrheology
,”
Annu. Rev. Fluid Mech.
42
,
413
(
2010
).
32.
E. M.
Furst
and
T. M.
Squires
,
Microrheology
(
Oxford University Press
,
Oxford
,
2017
).
33.
T. G.
Mason
and
D. A.
Weitz
, “
Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids
,”
Phys. Rev. Lett.
74
,
1250
(
1995
).
34.
T. G.
Mason
, “
Estimating the viscoelastic moduli of complex fluids using the generalized Stokes–Einstein equation
,”
Rheol. Acta
39
,
371
(
2000
).
35.
E.
Lauga
, “
Continuous breakdown of Purcell’s scallop theorem with inertia
,”
Phys. Fluids
19
,
061703
(
2007
).
You do not currently have access to this content.