We investigate the dynamics of viscoplastic droplets under the combined action of electric field and shear flow by performing direct numerical simulations. The electro-hydrodynamic equations are solved in a two-dimensional finite volume framework, and the interface is captured using a volume-of-fluid approach. The rheology of the viscoplastic droplet is modeled as a Bingham plastic fluid. Both the drop and the surrounding medium are considered to be perfect dielectric fluids. The simulations reveal that in the sole presence of the shear flow, the plasticity of the fluid plays a pivotal role in deciding the magnitude of droplet deformation and orientation. The local viscosity inside the drop is significantly augmented for higher plasticity of the fluid. Under the action of the electric field, the droplet deformation and orientation can be suitably tuned by varying the magnitude of the permittivity contrast between the fluids. The droplets experience enhanced deformation and preferred orientation against the flow direction when the permittivity ratio is greater than unity. Increasing the droplet plasticity leads to reduction in the droplet deformation. Conversely, by increasing the electric field strength, the deformation of the droplets can be notably enhanced, with a stronger response observed for a permittivity ratio beyond unity. Finally, it is observed that by suitably manipulating the strength of the shear flow and the electric field, droplet breakup can be engendered. The mode of droplet disintegration differs due to variation of the parameters, which can be attributed to the competing influence of shear and electric forces on the droplet.

1.
H. A.
Stone
,
A. D.
Stroock
, and
A.
Ajdari
, “
Engineering flows in small devices: Microfluidics toward a lab-on-a-chip
,”
Annu. Rev. Fluid Mech.
36
,
381
411
(
2004
).
2.
E.
Brouzes
,
M.
Medkova
,
N.
Savenelli
,
D.
Marran
,
M.
Twardowski
,
J. B.
Hutchison
,
J. M.
Rothberg
,
D. R.
Link
,
N.
Perrimon
, and
M. L.
Samuels
, “
Droplet microfluidic technology for single-cell high-throughput screening
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
14195
14200
(
2009
).
3.
G. M.
Whitesides
, “
The origins and the future of microfluidics
,”
Nature
442
,
368
373
(
2006
).
4.
V. A.
Lifton
, “
Microfluidics: An enabling screening technology for enhanced oil recovery (EOR)
,”
Lab Chip
16
,
1777
1796
(
2016
).
5.
G. I.
Taylor
, “
The viscosity of a fluid containing small drops of another fluid
,”
Proc. R. Soc. London, Ser. A
138
,
41
48
(
1932
).
6.
G. I.
Taylor
, “
The formation of emulsions in definable fields of flow
,”
Proc. R. Soc. London, Ser. A
146
,
501
523
(
1934
).
7.
E. J.
Hinch
and
A.
Acrivos
, “
Long slender drops in a simple shear flow
,”
J. Fluid Mech.
98
,
305
328
(
1980
).
8.
D.
Barthès-Biesel
and
A.
Acrivos
, “
Deformation and burst of a liquid droplet freely suspended in a linear shear field
,”
J. Fluid Mech.
61
,
1
22
(
1973
).
9.
M.
Shapira
and
S.
Haber
, “
Low Reynolds number motion of a droplet in shear flow including wall effects
,”
Int. J. Multiphase Flow
16
,
305
321
(
1990
).
10.
S.
Torza
,
R. G.
Cox
, and
S. G.
Mason
, “
Particle motions in sheared suspensions XXVII. Transient and steady deformation and burst of liquid drops
,”
J. Colloid Interface Sci.
38
,
395
411
(
1972
).
11.
H. P.
Grace
, “
Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems
,”
Chem. Eng. Commun.
14
,
225
277
(
1982
).
12.
F. D.
Rumscheidt
and
S. G.
Mason
, “
Particle motions in sheared suspensions XII. Deformation and burst of fluid drops in shear and hyperbolic flow
,”
J. Colloid Sci.
16
,
238
261
(
1961
).
13.
V.
Sibillo
,
G.
Pasquariello
,
M.
Simeone
,
V.
Cristini
, and
S.
Guido
, “
Drop deformation in microconfined shear flow
,”
Phys. Rev. Lett.
97
,
054502
(
2006
).
14.
H. A.
Stone
,
B. J.
Bentley
, and
L. G.
Leal
, “
An experimental study of transient effects in the breakup of viscous drops
,”
J. Fluid Mech.
173
,
131
158
(
1986
).
15.
K. S.
Sheth
and
C.
Pozrikidis
, “
Effects of inertia on the deformation of liquid drops in simple shear flow
,”
Comput. Fluids
24
,
101
119
(
1995
).
16.
J.
Li
,
Y. Y.
Renardy
, and
M.
Renardy
, “
Numerical simulation of breakup of a viscous drop in simple shear flow through a volume-of-fluid method
,”
Phys. Fluids
12
,
269
282
(
2000
).
17.
M. R.
Kennedy
,
C.
Pozrikidis
, and
R.
Skalak
, “
Motion and deformation of liquid drops, and the rheology of dilute emulsions in simple shear flow
,”
Comput. Fluids
23
,
251
278
(
1994
).
18.
X.
Li
,
R.
Charles
, and
C.
Pozrikidis
, “
Simple shear flow of suspensions of liquid drops
,”
J. Fluid Mech.
320
,
395
416
(
1996
).
19.
X.
Li
,
H.
Zhou
, and
C.
Pozrikidis
, “
A numerical study of the shearing motion of emulsions and foams
,”
J. Fluid Mech.
286
,
379
404
(
1995
).
20.
O.
Shardt
,
J. J.
Derksen
, and
S. K.
Mitra
, “
Simulations of droplet coalescence in simple shear flow
,”
Langmuir
29
,
6201
6212
(
2013
).
21.
M. R.
Hassan
,
J.
Zhang
, and
C.
Wang
, “
Deformation of a ferrofluid droplet in simple shear flows under uniform magnetic fields
,”
Phys. Fluids
30
,
092002
(
2018
).
22.
M. S. N.
Oliveira
,
R.
Yeh
, and
G. H.
McKinley
, “
Iterated stretching, extensional rheology and formation of beads-on-a-string structures in polymer solutions
,”
J. Non-Newtonian Fluid Mech.
137
,
137
148
(
2006
).
23.
I.
Delaby
,
B.
Ernst
,
Y.
Germain
, and
R.
Muller
, “
Droplet deformation in polymer blends during uniaxial elongational flow: Influence of viscosity ratio for large capillary numbers
,”
J. Rheol.
38
,
1705
1720
(
1994
).
24.
J. J.
Elmendorp
and
R. J.
Maalcke
, “
A study on polymer blending microrheology: Part 1
,”
Polym. Eng. Sci.
25
,
1041
1047
(
1985
).
25.
M.
Boufarguine
,
F.
Renou
,
T.
Nicolai
, and
L.
Benyahia
, “
Droplet deformation of a strongly shear thinning dense suspension of polymeric micelles
,”
Rheol. Acta
49
,
647
655
(
2010
).
26.
M.
Favelukis
and
A.
Nir
, “
Non-Newtonian slender drops in a simple shear flow
,”
J. Non-Newtonian Fluid Mech.
228
,
38
45
(
2016
).
27.
N.
Wang
,
H.
Liu
, and
C.
Zhang
, “
Deformation and breakup of a confined droplet in shear flows with power-law rheology
,”
J. Rheol.
61
,
741
758
(
2017
).
28.
N.
Ioannou
,
H.
Liu
,
M. S. N.
Oliveira
, and
Y.
Zhang
, “
Droplet dynamics of Newtonian and inelastic non-Newtonian fluids in confinement
,”
Micromachines
8
,
57
(
2017
).
29.
J. J. M.
Janssen
,
A.
Boon
, and
W. G. M.
Agterof
, “
Droplet break-up in simple shear flow in the presence of emulsifiers
,”
Colloids Surf., A
91
,
141
148
(
1994
).
30.
A.
Gupta
and
M.
Sbragaglia
, “
Deformation and breakup of viscoelastic droplets in confined shear flow
,”
Phys. Rev. E
90
,
023305
(
2014
).
31.
A.
Gupta
,
M.
Sbragaglia
, and
A.
Scagliarini
, “
Hybrid lattice Boltzmann/finite difference simulations of viscoelastic multicomponent flows in confined geometries
,”
J. Comput. Phys.
291
,
177
197
(
2015
).
32.
P.
Yue
,
J. J.
Feng
,
C.
Liu
, and
J.
Shen
, “
Transient drop deformation upon startup of shear in viscoelastic fluids
,”
Phys. Fluids
17
,
123101
(
2005
).
33.
N.
Aggarwal
and
K.
Sarkar
, “
Deformation and breakup of a viscoelastic drop in a Newtonian matrix under steady shear
,”
J. Fluid Mech.
584
,
1
21
(
2007
).
34.
N. J.
Balmforth
,
I. A.
Frigaard
, and
G.
Ovarlez
, “
Yielding to stress: Recent developments in viscoplastic fluid mechanics
,”
Annu. Rev. Fluid Mech.
46
,
121
146
(
2014
).
35.
B.
Nath
,
G.
Biswas
,
A.
Dalal
, and
K. C.
Sahu
, “
Cross-stream migration of drops suspended in Poiseuille flow in the presence of an electric field
,”
Phys. Rev. E
97
,
063106
(
2018
).
36.
M. P.
Borthakur
,
G.
Biswas
, and
D.
Bandyopadhyay
, “
Dynamics of drop formation from submerged orifices under the influence of electric field
,”
Phys. Fluids
30
,
122104
(
2018
).
37.
B.
Nath
,
G.
Biswas
, and
A.
Dalal
, “
Influence of electric field on deformation of a drop in shear flow
,”
Phys. Fluids
31
,
042102
(
2019
).
38.
J.-W.
Ha
and
S.-M.
Yang
, “
Electrohydrodynamics and electrorotation of a drop with fluid less conductive than that of the ambient fluid
,”
Phys. Fluids
12
,
764
772
(
2000
).
39.
R.
Allan
and
S.
Mason
, “
Particle behaviour in shear and electric fields I. Deformation and burst of fluid drops
,”
Proc. R. Soc. London, Ser. A
267
,
45
61
(
1962
).
40.
P. M.
Vlahovska
, “
On the rheology of a dilute emulsion in a uniform electric field
,”
J. Fluid Mech.
670
,
481
(
2011
).
41.
S.
Mandal
and
S.
Chakraborty
, “
Effect of uniform electric field on the drop deformation in simple shear flow and emulsion shear rheology
,”
Phys. Fluids
29
,
072109
(
2017
).
42.
S.
Maehlmann
and
D. T.
Papageorgiou
, “
Numerical study of electric field effects on the deformation of two-dimensional liquid drops in simple shear flow at arbitrary Reynolds number
,”
J. Fluid Mech.
626
,
367
(
2009
).
43.
K. A.
Raman
,
E.
Birgersson
,
Y.
Sui
, and
A.
Fisher
, “
Electrically induced droplet ejection dynamics under shear flow
,”
Phys. Fluids
32
,
032103
(
2020
).
44.
S.
Santra
,
D.
Sen
,
S.
Das
, and
S.
Chakraborty
, “
Electrohydrodynamic interaction between droplet pairs in a confined shear flow
,”
Phys. Fluids
31
,
032005
(
2019
).
45.
S.
Santra
,
S.
Mandal
, and
S.
Chakraborty
, “
Confinement effect on electrically induced dynamics of a droplet in shear flow
,”
Phys. Rev. E
100
,
033101
(
2019
).
46.
R.
Singh
,
S. S.
Bahga
, and
A.
Gupta
, “
Electric field induced droplet deformation and breakup in confined shear flows
,”
Phys. Rev. Fluids
4
,
033701
(
2019
).
47.
R.
Glowinski
and
A.
Wachs
, “
On the numerical simulation of viscoplastic fluid flow
,” in
Handbook of Numerical Analysis
(
Elsevier
,
2011
), Vol. 16, pp.
483
717
.
48.
Y.
Han
and
J.
Dong
, “
Electrohydrodynamic printing for advanced micro/nanomanufacturing: Current progresses, opportunities, and challenges
,”
J. Micro Nano-Manuf.
6
,
040802
(
2018
).
49.
J. U.
Brackbill
,
D. B.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
,
335
354
(
1992
).
50.
I. A.
Frigaard
and
C.
Nouar
, “
On the usage of viscosity regularisation methods for visco-plastic fluid flow computation
,”
J. Non-Newtonian Fluid Mech.
127
,
1
26
(
2005
).
51.
S.
Popinet
, “
A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi equations
,”
J. Comput. Phys.
302
,
336
358
(
2015
).
52.
S.
Popinet
, “
Gerris: A tree-based adaptive solver for the incompressible Euler equations in complex geometries
,”
J. Comput. Phys.
190
,
572
600
(
2003
).
53.
H.
Deka
,
J.-L.
Pierson
, and
E. J.
Soares
, “
Retraction of a viscoplastic liquid sheet
,”
J. Non-Newtonian Fluid Mech.
272
,
104172
(
2019
).
54.
R. L.
Thompson
and
E. J.
Soares
, “
Viscoplastic dimensionless numbers
,”
J. Non-Newtonian Fluid Mech.
238
,
57
64
(
2016
).
55.
J. M.
López-Herrera
,
S.
Popinet
, and
M. A.
Herrada
, “
A charge-conservative approach for simulating electrohydrodynamic two-phase flows using volume-of-fluid
,”
J. Comput. Phys.
230
,
1939
1955
(
2011
).
56.
S.
Vatsal
, Generalized Newtonian Fluid, http://basilisk.fr/sandbox/vatsal/GenaralizedNewtonian/Couette_NonNewtonian.c, accessed on 26-06-2020.
57.
B.
Nath
,
G.
Biswas
,
A.
Dalal
, and
K. C.
Sahu
, “
Migration of a droplet in a cylindrical tube in the creeping flow regime
,”
Phys. Rev. E
95
,
033110
(
2017
).
58.
P. J. A.
Janssen
,
A.
Vananroye
,
P.
Van Puyvelde
,
P.
Moldenaers
, and
P. D.
Anderson
, “
Generalized behavior of the breakup of viscous drops in confinements
,”
J. Rheol.
54
,
1047
1060
(
2010
).
59.
C.
Teixeira
,
A.
Silva
, and
L.
Rocha
, “
A computational fluid dynamics-based sensitivity analysis of the chemical vapor analysis process to synthesize carbon nanotubes
,”
J. Therm. Sci. Eng. Appl.
12
,
011010
(
2020
).
60.
N.
Barai
and
N.
Mandal
, “
Breakup modes of fluid drops in confined shear flows
,”
Phys. Fluids
28
,
073302
(
2016
).
61.
M. P.
Borthakur
,
G.
Biswas
, and
D.
Bandyopadhyay
, “
Dynamics of deformation and pinch-off of a migrating compound droplet in a tube
,”
Phys. Rev. E
97
,
043112
(
2018
).
You do not currently have access to this content.