Stability analysis is performed for a gravity-driven thin liquid film flowing down a locally heated porous substrate. Using the lubrication approximation, the governing equations are simplified to derive the evolution equation for the free surface of the liquid film. The Beaver-Joseph condition is employed at the interface of the porous layer and the liquid film. The base profiles are mainly influenced by parameters that appear due to non-uniform heating. Linear stability analysis is performed and reported that both thermocapillary and rivulet instabilities are enhanced with increasing values of the Marangoni number, Biot number, and Beavers–Joseph coefficient and decreasing values of the Darcy number. Dependence of critical Darcy number on the porous layer thickness and the Beavers–Joseph coefficient is presented. It is also shown that the full Darcy model can be replaced with an approximated slip model. The growth rate from nonlinear computations is consistent with the linear stability analysis.

1.
J. P.
Pascal
,
S. J. D.
D’Alessio
, and
M.
Hasan
, “
Instability of gravity-driven flow of a heated power-law fluid with temperature dependent consistency
,”
AIP Adv.
8
,
105215
(
2018
).
2.
P.
Deepu
,
S.
Kallurkar
,
P.
Anand
, and
S.
Basu
, “
Stability of a liquid film flowing down an inclined anisotropic and inhomogeneous porous layer: An analytical description
,”
J. Fluid Mech.
807
,
135
154
(
2016
).
3.
J. R. A.
Pearson
, “
On convection cells induced by surface tension
,”
J. Fluid Mech.
4
,
489
500
(
1958
).
4.
C. V.
Sternling
and
L. E.
Scriven
, “
Interfacial turbulence: Hydrodynamic instability and the Marangoni effect
,”
AIChE J.
5
,
514
523
(
1959
).
5.
D.
Goussis
and
R. E.
Kelly
, “
Effects of viscosity variation on the stability of film flow down heated or cooled inclined surfaces: Long-wavelength analysis
,”
J. Fluid Mech.
28
,
3207
(
1985
).
6.
D. A.
Goussis
and
R. E.
Kelly
, “
Surface wave and thermocapillary instabilities in a liquid film flow
,”
J. Fluid Mech.
223
,
25
45
(
1991
).
7.
M. K.
Smith
and
S. H.
Davis
, “
Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities
,”
J. Fluid Mech.
132
,
119
144
(
1983
).
8.
M. K.
Smith
and
S. H.
Davis
, “
Instabilities of dynamic thermocapillary liquid layers. Part 2. Surface-wave instabilities
,”
J. Fluid Mech.
132
,
145
162
(
1983
).
9.
M. K.
Smith
, “
The long-wave instability in heated or cooled inclined liquid layers
,”
J. Fluid Mech.
219
,
337
360
(
1990
).
10.
S.
Kalliadasis
,
E. A.
Demekhin
,
C.
Ruyer-Quil
, and
M. G.
Velarde
, “
Thermocapillary instability and wave formation on a film falling down a uniformly heated plane
,”
J. Fluid Mech.
492
,
303
338
(
2003
).
11.
M. F.
Schatz
and
G. P.
Neitzel
, “
Experiments on thermocapillary instabilities
,”
Annu. Rev. Fluid Mech.
33
,
93
129
(
2001
).
12.
S. H.
Davis
, “
Thermocapillary instabilities
,”
Annu. Rev. Fluid Mech.
19
,
403
435
(
1987
).
13.
O. A.
Kabov
,
I. V.
Marchuk
, and
V. M.
Chupin
, “
Thermal imaging study of the liquid film flowing on a vertical surface with local heat source
,”
Russ. J. Eng. Thermophys.
6
,
105
138
(
1996
).
14.
O. A.
Kabov
,
I. V.
Marchuk
,
A. V.
Muzykantov
,
J. C.
Legros
,
E.
Istasse
, and
J. L.
Dewandel
, “
Regular structures in locally heated falling liquid films
,” in
Proceedings of 2nd International Symposium on Two-Phase Flow Modelling and Experimentation
, edited by
G. P.
Celata
,
P.
DiMarco
, and
R. K.
Shah
(
PISA
,
1999
).
15.
S.
Kalliadasis
,
A.
Kiyashko
, and
E. A.
Demekhin
, “
Marangoni instability of a thin liquid film heated from below by a local heat source
,”
J. Fluid Mech.
475
,
377
408
(
2003
).
16.
Y. O.
Kabova
,
A.
Alexeev
,
T.
Gambaryan-Roisman
, and
P.
Stephan
, “
Marangoni-induced deformation and rupture of a liquid film on a heated microstructured wall
,”
Phys. Fluids
18
,
012104
(
2006
).
17.
O. A.
Kabov
,
B.
Scheid
,
A.
Sharina
, and
J. C.
Legros
, “
Thermocapillary convection in a falling thin liquid film locally heated
,” in
Proceedings of 5th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Thessaloniki
(
2001
), Vol. 3, p.
2007
.
18.
O. A.
Kabov
, “
Formation of regular structures in a falling liquid film upon local heating
,”
Thermophys. Aeromech.
5
,
547
551
(
1998
).
19.
S. W.
Joo
,
S. H.
Davis
, and
S. G.
Bankoff
, “
A mechanism for rivulet formation in heated falling films
,”
J. Fluid Mech.
321
,
279
298
(
1996
).
20.
A. M.
Frank
and
O. A.
Kabov
, “
Thermocapillary structure formation in a falling film: Experiment and calculations
,”
Phys. Fluids
18
,
032107
(
2006
).
21.
N.
Tiwari
,
Z.
Mester
, and
J.
Davis
, “
Stability and transient dynamics of the thin liquid films flowing over locally heated surfaces
,”
Phys. Rev. E
76
,
056306
(
2007
).
22.
N.
Tiwari
and
J. M.
Davis
, “
Stability of a volatile liquid film spreading along a heterogeneously-heated substrate
,”
J. Colloid Interface Sci.
355
,
243
251
(
2011
).
23.
R.
Liu
and
O. A.
Kabov
, “
Effect of mutual location and the shape of heaters on the stability of thin films flowing over locally heated surfaces
,”
Int. J. Heat Mass Transfer
65
,
23
32
(
2013
).
24.
S. W.
Joo
,
S. H.
Davis
, and
S. G.
Bankoff
, “
Long-wave instabilities of heated falling films: Two-dimensional theory of uniform layers
,”
J. Fluid Mech.
230
,
117
(
1991
).
25.
V.
Frumkin
and
A.
Oron
, “
Liquid film flow along a substrate with an asymmetric topography sustained by the thermocapillary effect
,”
Phys. Fluids
28
,
082107
(
2016
).
26.
O. A.
Kabov
, “
Heat transfer from a small heater to a falling liquid film
,”
Heat Transfer Res.
27
,
221
226
(
1996
).
27.
J. M.
Skotheim
,
U.
Thiele
, and
B.
Scheid
, “
On the instability of a falling film due to localized heating
,”
J. Fluid Mech.
475
,
1
19
(
2003
).
28.
N.
Tiwari
and
J. M.
Davis
, “
Linear stability of a volatile liquid film flowing over a locally heated surface
,”
Phys. Fluids
21
,
022105
(
2009
).
29.
D. D.
Joseph
and
L. N.
Tao
, “
Lubrication of a porous bearing-Stokes’ solution
,”
J. Appl. Math.
33
,
753
760
(
1966
).
30.
C. C.
Shir
and
D. D.
Joseph
, “
Lubrication of a porous bearing-Reynolds’ solution
,”
J. Appl. Math.
33
,
761
767
(
1966
).
31.
N.
Kumnit
and
D. M.
Anderson
, “
Thin film evolution over a thin porous layer: Modeling a tear film on a contact lens
,”
J. Appl. Mech.
33
,
761
767
(
1966
).
32.
L. I.
Mussel
and
R.
Glang
,
Handbook of Thin Film Technology
(
McGraw-Hill
,
New York
,
1970
).
33.
J. P.
Pascal
, “
Linear stability of fluid flow down a porous inclined plane
,”
J. Phys. D: Appl. Phys.
32
,
417
(
1991
).
34.
G. S.
Beavers
and
D. D.
Joseph
, “
Boundary conditions at a naturally permeable wall
,”
J. Fluid Mech.
30
,
197
207
(
1967
).
35.
J. P.
Pascal
, “
Instability of power-law fluid flow down a porous incline
,”
J. Non-Newtonian Fluid Mech.
133
,
109
(
2006
).
36.
M.
Iervolino
,
J.-P.
Pascal
, and
A.
Vacca
, “
Thermocapillary instabilities of a shear-thinning fluid falling over a porous layer
,”
J. Non-Newtonian Fluid Mech.
270
,
36
50
(
2019
).
37.
I. M. R.
Sadiq
,
R.
Usha
, and
S. W.
Joo
, “
Instabilities in a liquid film flow over an inclined heated porous substrate
,”
Chem. Eng. Sci.
65
,
4443
4459
(
2010
).
38.
U.
Thiele
,
B.
Goyeau
, and
M. G.
Velarde
, “
Stability analysis of thin film flow along a heated porous wall
,”
Phys. Fluids
21
,
014103
(
2009
).
39.
J. A.
Ochoa-Tapia
and
S.
Whitaker
, “
Momentum transfer at the boundary between a porous medium and a homogeneous fluid—I. Theoretical development
,”
Int. J. Heat Mass Transfer
38
,
2635
2646
(
1995
).
40.
J. A.
Ochoa-Tapia
and
S.
Whitaker
, “
Momentum transfer at the boundary between a porous medium and a homogeneous fluid—II. Comparison with experiment
,”
Int. J. Heat Mass Transfer
38
,
2647
2655
(
1995
).
41.
T. C.
Kumawat
and
N.
Tiwari
, “
Stability analysis of non-inertial thin film flow over a heterogeneously heated porous substrate
,”
Phys. Fluids
28
,
022104
(
2016
).
42.
S.
Sengupta
and
S.
De
, “
Stability of Poiseuille flow of a Bingham fluid overlying an anisotropic and inhomogeneous porous layer
,”
J. Fluid Mech.
874
,
573
605
(
2019
).
43.
I. M. R.
Sadiq
and
R.
Usha
, “
Thin Newtonian film flow down a porous inclined plane: Stability analysis
,”
Phys. Fluids
20
,
022105
(
2008
).
44.
A.
Samanta
, “
Linear stability of a plane Couette-Poiseuille flow overlying a porous layer
,”
Int. J. Multiphase Flow
123
,
103160
(
2020
).
45.
P. D.
Antoniadis
and
M. V.
Papalexandris
, “
Dynamics of shear layers at the interface of a highly porous medium and a pure fluid
,”
Phys. Fluids
27
,
014104
(
2015
).
46.
J.
Rubinstein
, “
Effective equations for flow in random porous media with a large number of scales
,”
J. Fluid Mech.
170
,
379
383
(
1986
).
47.
L.
Durlofsky
and
J. F.
Brady
, “
Analysis of the Brinkman equation as a model for flow in porous media
,”
Phys. Fluids
30
,
3329
3341
(
1987
).
48.
J.-L.
Auriault
, “
On the domain of validity of Brinkman’s equation
,”
Transp. Porous Media
79
,
215
223
(
2009
).
49.
D. A.
Nield
and
A.
Bejan
,
Convection in Porous Media
(
Springer Science+Business Media, Inc.
,
New York
,
2006
).
50.
P.
Angot
,
B.
Goyeau
, and
J. A.
Ochoa-Tapia
, “
Asymptotic modeling of transport phenomena at the interface between a fluid and a porous layer: Jump conditions
,”
Phys. Rev. E
95
,
063302
(
2017
).
51.
G. I.
Taylor
, “
A model for the boundary condition of a porous material. Part 1
,”
J. Fluid Mech.
49
,
319
326
(
1971
).
52.
A. C.
Baytasa
,
D.
Erdema
,
H.
Acara
,
O.
Cetinera
, and
H.
Bascýb
, “
Experimental investigation of interfacial conditions between fluid and porous layer formed by periodic arrays of circular and non-circular cylinders
,”
Acta Phys. Pol., A
133
,
1314
1323
(
2018
).
53.
P. G.
Saffman
, “
On the boundary condition at the surface of a porous medium
,”
Stud. Appl. Math.
50
,
93
101
(
1971
).
54.
S.
Richardson
, “
A model for the boundary condition of a porous material. Part 2
,”
J. Fluid Mech.
49
,
327
336
(
1971
).
55.
N.
Tiwari
and
J. M.
Davis
, “
Nonmodal and nonlinear dynamics of a volatile liquid film flowing over a locally heated surface
,”
Phys. Fluids
21
,
102101
(
2009
).
56.
N.
Tiwari
,
A.
Awasthi
, and
J. M.
Davis
, “
Linear stability analysis of thin liquid film flow over a heterogeneously heated substrate
,”
Phys. Fluids
26
,
042105
(
2014
).
57.
A. M.
Frank
, “
3D numerical simulation of regular structure formation in a locally heated falling film
,”
Eur. J. Mech.: B/Fluids
22
,
445
471
(
2003
).
58.
B. F.
Farrell
and
P. J.
Ioannou
, “
Generalized stability theory. Part I: Autonomous operators
,”
J. Atmos. Sci.
53
,
14
(
1996
).
59.
S. M.
Troin
,
E.
Herbolzehimer
,
S. A.
Safran
, and
J. F.
Joanny
, “
Fingering instabilities of driven spreading films
,”
Europhys. Lett.
10
,
25
30
(
1989
).
60.
L. W.
Schwartz
,
R. V.
Roy
,
R. R.
Eley
, and
S.
Petrash
, “
Dewetting patterns in a drying liquid film
,”
J. Colloid Interface Sci.
234
,
363
374
(
2001
).
You do not currently have access to this content.