Shear-thinning viscoelastic (STVE) flows exhibit intriguing phenomena owing to their complex rheology and the coupling of various forces involved. Here, we present an understanding of the cross-stream migration of droplets in a confined STVE flow and unravel the role of a shear-thinning induced lift force (FSM) in their dynamical behavior. We perform experiments with popular STVE liquids of different molecular weights and concentrations (c) for Reynolds numbers Re < 1 and Weissenberg numbers Wi = 0.01–7.4. Our results reveal larger droplets (of drop-to-channel ratio β ≥ 0.28) that follow their original streamlines, whereas smaller droplets (β ≤ 0.2) exhibit center ward migration and the migration rates depend upon the drop-to-medium viscosity (k) and elasticity (ξ) ratios. The lateral displacement of droplets is tracked using high-speed imaging that is used to estimate the relevant forces using suitable correlations. We find that the migration dynamics of droplets is underpinned by the non-inertial lift (FNIL), viscoelastic lift (FVM, FVD), and shear-thinning induced lift (FSM) forces. We provide experimental evidence of the proposed FSM and, from analytical scaling and empirical modeling, develop an expression for FSMΔμΔγ̇D3.7/h1.7 (with R2 = 0.95) for an object at a distance h from the wall and with a drop in viscosity Δμ and strain rate Δγ̇ across its diameter D. Our study sheds light on the underlying dynamics on droplets in an STVE medium and opens up avenues for sorting and focusing of drops in an STVE medium at low Re.

1.
P.
Sajeesh
and
A. K.
Sen
, “
Particle separation and sorting in microfluidic devices: A review
,”
Microfluid. Nanofluid.
17
,
1
(
2014
).
2.
D.
Yuan
,
Q.
Zhao
,
S.
Yan
,
S.-Y.
Tang
,
G.
Alici
,
J.
Zhang
, and
W.
Li
, “
Recent progress of particle migration in viscoelastic fluids
,”
Lab Chip
18
,
551
(
2018
).
3.
D.
Wang
,
D.
Tan
, and
N.
Phan-Thien
, “
A lattice Boltzmann method for simulating viscoelastic drops
,”
Phys. Fluids
31
,
073101
(
2019
).
4.
A.
Zhang
,
Z.
Guo
,
Q.
Wang
, and
S.
Xiong
, “
Three-dimensional numerical simulation of bubble rising in viscous liquids: A conservative phase-field lattice-Boltzmann study
,”
Phys. Fluids
31
,
063106
(
2019
).
5.
C.
Saengow
,
A. J.
Giacomin
, and
C.
Kolitawong
, “
Exact analytical solution for large-amplitude oscillatory shear flow from Oldroyd 8-constant framework: Shear stress
,”
Phys. Fluids
29
,
043101
(
2017
).
6.
T. X.
Ho
,
N.
Phan-Thien
, and
B. C.
Khoo
, “
Destabilization of clouds of monodisperse and polydisperse particles falling in a quiescent and viscous fluid
,”
Phys. Fluids
28
,
063305
(
2016
).
7.
M.
Nooranidoost
,
D.
Izbassarov
, and
M.
Muradoglu
, “
Droplet formation in a flow focusing configuration: Effects of viscoelasticity
,”
Phys. Fluids
28
,
123102
(
2016
).
8.
X.
Chen
,
C.
Xue
,
L.
Zhang
,
G.
Hu
,
X.
Jiang
, and
J.
Sun
, “
Inertial migration of deformable droplets in a microchannel
,”
Phys. Fluids
26
,
112003
(
2014
).
9.
R.
Zenit
and
J. J.
Feng
, “
Hydrodynamic interactions among bubbles, drops, and particles in non-Newtonian liquids
,”
Annu. Rev. Fluid Mech.
50
,
505
(
2018
).
10.
R. P.
Chhabra
, “
Non-Newtonian fluids: An introduction
,” in
Rheology of Complex Fluids
(
Springer
,
2010
), pp.
3
34
.
11.
J. R.
Gomez-Solano
,
A.
Blokhuis
, and
C.
Bechinger
, “
Dynamics of self-propelled janus particles in viscoelastic fluids
,”
Phys. Rev. Lett.
116
,
138301
(
2016
).
12.
C.
Martino
and
A. J.
deMello
, “
Droplet-based microfluidics for artificial cell generation: A brief review
,”
Interface Focus
6
,
20160011
(
2016
).
13.
C.
Datt
,
L.
Zhu
,
G. J.
Elfring
, and
O. S.
Pak
, “
Squirming through shear-thinning fluids
,”
J. Fluid Mech.
784
,
R1
(
2015
).
14.
P. C.-H.
Chan
and
L. G.
Leal
, “
The motion of a deformable drop in a second-order fluid
,”
J. Fluid Mech.
92
,
131
(
1979
).
15.
S.
Mukherjee
and
K.
Sarkar
, “
Lateral migration of a viscoelastic drop in a Newtonian fluid in a shear flow near a wall
,”
Phys. Fluids
26
,
103102
(
2014
).
16.
N.
Aggarwal
and
K.
Sarkar
, “
Rheology of an emulsion of viscoelastic drops in steady shear
,”
J. Non-Newtonian Fluid Mech.
150
,
19
(
2008
).
17.
N.
Aggarwal
and
K.
Sarkar
, “
Deformation and breakup of a viscoelastic drop in a Newtonian matrix under steady shear
,”
J. Fluid Mech.
584
,
1
(
2007
).
18.
D.
Izbassarov
and
M.
Muradoglu
, “
A front-tracking method for computational modeling of viscoelastic two-phase flow systems
,”
J. Non-Newtonian Fluid Mech.
223
,
122
(
2015
).
19.
H.
Zolfaghari
,
D.
Izbassarov
, and
M.
Muradoglu
, “
Simulations of viscoelastic two-phase flows in complex geometries
,”
Comput. Fluids
156
,
548
(
2017
).
20.
S.
Hazra
,
S. K.
Mitra
, and
A. K.
Sen
, “
Lateral migration of viscoelastic droplets in a viscoelastic confined flow: Role of discrete phase viscoelasticity
,”
Soft Matter
15
,
9003
(
2019
).
21.
J. D.
Evans
,
I. L.
Palhares Junior
, and
C. M.
Oishi
, “
Stresses of PTT, Giesekus, and Oldroyd-B fluids in a Newtonian velocity field near the stick-slip singularity
,”
Phys. Fluids
29
,
121604
(
2017
).
22.
H.
Giesekus
, “
A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility
,”
J. Non-Newtonian Fluid Mech.
11
,
69
(
1982
).
23.
P.
Yue
,
J.
Dooley
, and
J. J.
Feng
, “
A general criterion for viscoelastic secondary flow in pipes of noncircular cross section
,”
J. Rheol.
52
,
315
(
2008
).
24.
X.
Lu
,
C.
Liu
,
G.
Hu
, and
X.
Xuan
, “
Particle manipulations in non-Newtonian microfluidics: A review
,”
J. Colloid Interface Sci.
500
,
182
(
2017
).
25.
M. M.
Villone
,
G.
D’Avino
,
M. A.
Hulsen
,
F.
Greco
, and
P. L.
Maffettone
, “
Particle motion in square channel flow of a viscoelastic liquid: Migration vs secondary flows
,”
J. Non-Newtonian Fluid Mech.
195
,
1
(
2013
).
26.
M. M.
Villone
and
P. L.
Maffettone
, “
Dynamics, rheology, and applications of elastic deformable particle suspensions: A review
,”
Rheol. Acta
58
,
109
(
2019
).
27.
M. A.
Tehrani
, “
An experimental study of particle migration in pipe flow of viscoelastic fluids
,”
J. Rheol.
40
,
1057
(
1996
).
28.
A. M.
Leshansky
,
A.
Bransky
,
N.
Korin
, and
U.
Dinnar
, “
Tunable nonlinear viscoelastic “focusing” in a microfluidic device
,”
Phys. Rev. Lett.
98
,
234501
(
2007
).
29.
S.
Yang
,
J. Y.
Kim
,
S. J.
Lee
,
S. S.
Lee
, and
J. M.
Kim
, “
Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel
,”
Lab Chip
11
,
266
(
2011
).
30.
K.
Kang
,
S. S.
Lee
,
K.
Hyun
,
S. J.
Lee
, and
J. M.
Kim
, “
DNA-based highly tunable particle focuser
,”
Nat. Commun.
4
,
2567
(
2013
).
31.
G.
Holzner
,
S.
Stavrakis
, and
A.
Demello
, “
Elasto-inertial focusing of mammalian cells and bacteria using low molecular, low viscosity PEO solutions
,”
Anal. Chem.
89
,
11653
(
2017
).
32.
E. J.
Lim
,
T. J.
Ober
,
J. F.
Edd
,
S. P.
Desai
,
D.
Neal
,
K. W.
Bong
,
P. S.
Doyle
,
G. H.
McKinley
, and
M.
Toner
, “
Inertio-elastic focusing of bioparticles in microchannels at high throughput
,”
Nat. Commun.
5
,
4120
(
2014
).
33.
C.
Liu
,
J.
Guo
,
F.
Tian
,
N.
Yang
,
F.
Yan
,
Y.
Ding
,
J.
Wei
,
G.
Hu
,
G.
Nie
, and
J.
Sun
, “
Field-free isolation of exosomes from extracellular vesicles by microfluidic viscoelastic flows
,”
ACS Nano
11
,
6968
(
2017
).
34.
D.
Yuan
,
S. H.
Tan
,
R.
Sluyter
,
Q.
Zhao
,
S.
Yan
,
N. T.
Nguyen
,
J.
Guo
,
J.
Zhang
, and
W.
Li
, “
On-chip microparticle and cell washing using coflow of viscoelastic fluid and Newtonian fluid
,”
Anal. Chem.
89
,
9574
(
2017
).
35.
L.
Shang
,
Y.
Cheng
, and
Y.
Zhao
, “
Emerging droplet microfluidics
,”
Chem. Rev.
117
,
7964
(
2017
).
36.
S.-Y.
Teh
,
R.
Lin
,
L.-H.
Hung
, and
A. P.
Lee
, “
Droplet microfluidics
,”
Lab Chip
8
,
198
(
2008
).
37.
N.
Wang
,
H.
Liu
, and
C.
Zhang
, “
Deformation and breakup of a confined droplet in shear flows with power-law rheology
,”
J. Rheol.
61
,
741
(
2017
).
38.
E.
Chiarello
,
A.
Gupta
,
G.
Mistura
,
M.
Sbragaglia
, and
M.
Pierno
, “
Droplet breakup driven by shear thinning solutions in a microfluidic T-junction
,”
Phys. Rev. Fluids
2
,
123602
(
2017
).
39.
M.
Aytouna
,
J.
Paredes
,
N.
Shahidzadeh-Bonn
,
S.
Moulinet
,
C.
Wagner
,
Y.
Amarouchene
,
J.
Eggers
, and
D.
Bonn
, “
Drop formation in non-Newtonian fluids
,”
Phys. Rev. Lett.
110
,
034501
(
2013
).
40.
F.
Gauthier
,
H. L.
Goldsmith
, and
S. G.
Mason
, “
Particle motions in non-Newtonian media. II. Poiseuille Flow
,”
Trans. Soc. Rheol.
15
,
297
(
1971
).
41.
S.
Caserta
,
G.
D’Avino
,
F.
Greco
,
S.
Guido
, and
P. L.
Maffettone
, “
Migration of a sphere in a viscoelastic fluid under planar shear flow: Experiments and numerical predictions
,”
Soft Matter
7
,
1100
(
2011
).
42.
P.
Wang
,
Z.
Yu
, and
J.
Lin
, “
Numerical simulations of particle migration in rectangular channel flow of Giesekus viscoelastic fluids
,”
J. Non-Newtonian Fluid Mech.
262
,
142
(
2018
).
43.
P. Y.
Huang
,
J.
Feng
,
H. H.
Hu
, and
D. D.
Joseph
, “
Direct simulation of the motion of solid particles in Couette and Poiseuille flows of viscoelastic fluids
,”
J. Fluid Mech.
343
,
73
(
1997
).
44.
D.
Yuan
,
Q.
Zhao
,
S.
Yan
,
S.-Y.
Tang
,
Y.
Zhang
,
G.
Yun
,
N.-T.
Nguyen
,
J.
Zhang
,
M.
Li
, and
W.
Li
, “
Sheathless separation of microalgae from bacteria using a simple straight channel based on viscoelastic microfluidics
,”
Lab Chip
19
,
2811
(
2019
).
45.
H.
Lim
,
J.
Nam
, and
S.
Shin
, “
Lateral migration of particles suspended in viscoelastic fluids in a microchannel flow
,”
Microfluid. Nanofluid.
17
,
683
(
2014
).
46.
G.
D’Avino
,
G.
Romeo
,
M. M.
Villone
,
F.
Greco
,
P. A.
Netti
, and
P. L.
Maffettone
, “
Single line particle focusing induced by viscoelasticity of the suspending liquid: Theory, experiments and simulations to design a micropipe flow-focuser
,”
Lab Chip
12
,
1638
(
2012
).
47.
G.
Li
,
G. H.
McKinley
, and
A. M.
Ardekani
, “
Dynamics of particle migration in channel flow of viscoelastic fluids
,”
J. Fluid Mech.
785
,
486
(
2015
).
48.
A. C.
Hatch
,
A.
Patel
,
N. R.
Beer
, and
A. P.
Lee
, “
Passive droplet sorting using viscoelastic flow focusing
,”
Lab Chip
13
,
1308
(
2013
).
49.
P.
Sajeesh
,
M.
Doble
, and
A. K.
Sen
, “
Hydrodynamic resistance and mobility of deformable objects in microfluidic channels
,”
Biomicrofluidics
8
,
054112
(
2014
).
50.
J.
Carneiro
,
E.
Doutel
,
J. B. L. M.
Campos
, and
J. M.
Miranda
, “
PDMS droplet formation and characterization by hydrodynamic flow focusing technique in a PDMS square microchannel
,”
J. Micromech. Microeng.
26
,
105013
(
2016
).
51.
E.
Chiarello
,
L.
Derzsi
,
M.
Pierno
,
G.
Mistura
, and
E.
Piccin
, “
Generation of oil droplets in a non-Newtonian liquid using a microfluidic T-junction
,”
Micromachines
6
,
1825
(
2015
).
52.
M.
Abkarian
,
C.
Lartigue
, and
A.
Viallat
, “
Tank treading and unbinding of deformable vesicles in shear flow: Determination of the lift force
,”
Phys. Rev. Lett.
88
,
068103
(
2002
).
53.
M.
Abkarian
and
A.
Viallat
, “
Dynamics of vesicles in a wall-bounded shear flow
,”
Biophys. J.
89
,
1055
(
2005
).
54.
D. F.
James
, “
Boger fluids
,”
Annu. Rev. Fluid Mech.
41
,
129
(
2008
).
55.
B. P.
Ho
and
L. G.
Leal
, “
Migration of rigid spheres in a two-dimensional unidirectional shear flow of a second-order fluid
,”
J. Fluid Mech.
76
,
783
(
1976
).
56.
M. M.
Cross
, “
Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems
,”
J. Colloid Sci.
20
,
417
(
1965
).
57.
K. W.
Ebagninin
,
A.
Benchabane
, and
K.
Bekkour
, “
Rheological characterization of poly(ethylene oxide) solutions of different molecular weights
,”
J. Colloid Interface Sci.
336
,
360
(
2009
).
58.
Y.
Liu
,
Y.
Jun
, and
V.
Steinberg
, “
Concentration dependence of the longest relaxation times of dilute and semi-dilute polymer solutions
,”
J. Rheol.
53
,
1069
(
2009
).
59.
S. H.
Yang
,
D. J.
Lee
,
J. R.
Youn
, and
Y. S.
Song
, “
Multiple-line particle focusing under viscoelastic flow in a microfluidic device
,”
Anal. Chem.
89
,
3639
(
2017
).
60.
R.
Poryles
and
R.
Zenit
, “
Encapsulation of droplets using cusp formation behind a drop rising in a non-Newtonian fluid
,”
Fluids
3
,
54
(
2018
).
61.
Y.
Wang
,
R. A.
Pethrick
,
N. E.
Hudson
, and
C. J.
Schaschke
, “
Rheology of poly(acrylic acid): A model study
,”
Ind. Eng. Chem. Res.
51
,
16196
(
2012
).
62.
D.
Li
,
X.
Lu
, and
X.
Xuan
, “
Viscoelastic separation of particles by size in straight rectangular microchannels: A parametric study for a refined understanding
,”
Anal. Chem.
88
,
12303
(
2016
).
63.
L.
Derzsi
,
M.
Kasprzyk
,
J. P.
Plog
, and
P.
Garstecki
, “
Flow focusing with viscoelastic liquids
,”
Phys. Fluids
25
,
092001
(
2013
).
64.
V. N.
Kalashnikov
, “
Shear-rate dependent viscosity of dilute polymer solutions
,”
J. Rheol.
38
,
1385
(
1994
).
65.
R. A.
Frazier
,
Physical Chemistry of Foods
(
Food Chemistry
,
2004
).
66.
R.
Poole
, “
The Deborah and Weissenberg numbers
,”
British Soc. Rheol. Rheol. Bull
53
,
32
(
2012
).
67.
H.
Zhou
and
C.
Pozrikidis
, “
Pressure-driven flow of suspensions of liquid drops
,”
Phys. Fluids
6
,
80
(
1994
).
68.
M.
Aberuee
and
S.
Mortazavi
, “
Effect of viscosity ratio on the motion of drops flowing on an inclined surface
,”
Theor. Comput. Fluid Dyn.
32
,
73
(
2018
).
69.
T.
Jing
,
R.
Ramji
,
M. E.
Warkiani
,
J.
Han
,
C. T.
Lim
, and
C.-H.
Chen
, “
Jetting microfluidics with size-sorting capability for single-cell protease detection
,”
Biosens. Bioelectron.
66
,
19
(
2015
).
70.
K. S.
Jayaprakash
and
A. K.
Sen
, “
Droplet encapsulation of particles in different regimes and sorting of particle-encapsulating-droplets from empty droplets
,”
Biomicrofluidics
13
,
034108
(
2019
).
71.
E. O. A.
Carew
and
P.
Townsend
, “
Slow visco-elastic flow past a cylinder in a rectangular channel
,”
Rheol. Acta
30
,
58
(
1991
).
72.
F. M.
White
,
Viscous Fluid Flow
(
McGraw-Hill
,
2006
), p.
629
.

Supplementary Material

You do not currently have access to this content.