Modeling dense gas flows inside channels with sections comparable to the diameter of gas molecules is essential in porous medium applications, such as in non-conventional shale reservoir management and nanofluidic separation membranes. In this paper, we perform the first verification study of the Enskog equation by using particle simulation methods based on the same hard-sphere collisions dynamics. Our in-house Event-Driven Molecular Dynamics (EDMD) code and a pseudo-hard-sphere Molecular Dynamics (PHS-MD) solver are used to study force-driven Poiseuille flows in the limit of high gas densities and high confinements. Our results showed (a) very good agreement between EDMD, PHS-MD, and Enskog solutions across density, velocity, and temperature profiles for all the simulation conditions and (b) numerical evidence that deviations exist in the normalized mass flow rate vs Knudsen number curve compared to the standard curve without confinement. While we observe slight deviations in the Enskog density and velocity profiles from the MD when the reduced density is greater than 0.2, this limit is well above practical engineering applications, such as in shale gas. The key advantages of promoting the Enskog equation for upscaling flows in porous media lie in its ability to capture the non-equilibrium physics of tightly confined fluids while being computationally more efficient than fundamental simulation approaches, such as molecular dynamics and derivative solvers.

1.
J. K.
Holt
,
H. G.
Park
,
Y.
Wang
,
M.
Stadermann
,
A. B.
Artyukhin
,
C. P.
Grigoropoulos
,
A.
Noy
, and
O.
Bakajin
, “
Fast mass transport through sub-2-nanometer carbon nanotubes
,”
Science
312
,
1034
1037
(
2006
).
2.
Y.
Gensterblum
,
A.
Ghanizadeh
,
R. J.
Cuss
,
A.
Amann-Hildenbrand
,
B. M.
Krooss
,
C. R.
Clarkson
,
J. F.
Harrington
, and
M. D.
Zoback
, “
Gas transport and storage capacity in shale gas reservoirs—A review. Part A: Transport processes
,”
J. Unconv. Oil Gas Resour.
12
,
87
122
(
2015
).
3.
G. M.
Kremer
,
An Introduction to the Boltzmann Equation and Transport Processes in Gases
(
Springer Science & Business Media
,
2010
).
4.
W.-M.
Zhang
,
G.
Meng
, and
X.
Wei
, “
A review on slip models for gas microflows
,”
Microfluid. Nanofluid.
13
,
845
882
(
2012
).
5.
L.
Zhang
,
S.
Baochao
,
Z.
Yulong
, and
G.
Zhaoli
, “
Review of micro seepage mechanisms in shale gas reservoirs
,”
Int. J. Heat Mass Transfer
139
,
144
179
(
2019
).
6.
H.
Struchtrup
, “
Macroscopic transport equations for rarefied gas flows
,” in
Macroscopic Transport Equations for Rarefied Gas Flows
(
Springer
,
2005
), pp.
145
160
.
7.
M.
Torrilhon
, “
Modeling nonequilibrium gas flow based on moment equations
,”
Annu. Rev. Fluid Mech.
48
,
429
458
(
2016
).
8.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Clarendon Press
,
Oxford
,
1994
).
9.
J.
Li
,
Multiscale and Multiphysics Flow Simulations of Using the Boltzmann Equation
(
Springer
,
2020
).
10.
J.
Li
, “
Efficient prediction of gas permeability by hybrid DSBGK-LBM simulations
,”
Fuel
250
,
154
159
(
2019
).
11.
R. S.
Myong
,
A.
Karchani
, and
O.
Ejtehadi
, “
A review and perspective on a convergence analysis of the direct simulation Monte Carlo and solution verification
,”
Phys. Fluids
31
,
066101
(
2019
).
12.
M. H.
Ahmadian
,
E.
Roohi
,
A.
Teymourtash
, and
S.
Stefanov
, “
A dusty gas model-direct simulation Monte Carlo algorithm to simulate flow in micro-porous media
,”
Phys. Fluids
31
,
062007
(
2019
).
13.
G.
Dimarco
and
L.
Pareschi
, “
Numerical methods for kinetic equations
,”
Acta Numer.
23
,
369
520
(
2014
).
14.
G. P.
Ghiroldi
and
L.
Gibelli
, “
A direct method for the Boltzmann equation based on a pseudo-spectral velocity space discretization
,”
J. Comput. Phys.
258
,
568
584
(
2014
).
15.
C.
Cercignani
and
A.
Daneri
, “
Flow of a rarefied gas between two parallel plates
,”
J. Appl. Phys.
34
,
3509
3513
(
1963
).
16.
W. G.
Pollard
and
R. D.
Present
, “
On gaseous self-diffusion in long capillary tubes
,”
Phys. Rev.
73
,
762
(
1948
).
17.
G.
Tatsios
,
S. K.
Stefanov
, and
D.
Valougeorgis
, “
Predicting the Knudsen paradox in long capillaries by decomposing the flow into ballistic and collision parts
,”
Phys. Rev. E
91
,
061001
(
2015
).
18.
S. A.
Somers
and
H. T.
Davis
, “
Microscopic dynamics of fluids confined between smooth and atomically structured solid surfaces
,”
J. Chem. Phys.
96
,
5389
5407
(
1992
).
19.
K. P.
Travis
,
B. D.
Todd
, and
D. J.
Evans
, “
Departure from Navier-Stokes hydrodynamics in confined liquids
,”
Phys. Rev. E
55
,
4288
4295
(
1997
).
20.
B. D.
Todd
and
D. J.
Evans
, “
Temperature profile for Poiseuille flow
,”
Phys. Rev. E
55
,
2800
2807
(
1997
).
21.
K. P.
Travis
,
B. D.
Todd
, and
D. J.
Evans
, “
Poiseuille flow of molecular fluids
,”
Physica A
240
,
315
327
(
1997
).
22.
K. P.
Travis
and
K. E.
Gubbins
, “
Poiseuille flow of Lennard-Jones fluids in narrow slit pores
,”
J. Chem. Phys.
112
,
1984
1994
(
2000
).
23.
H. W.
Kim
,
H. W.
Yoon
,
S.-M.
Yoon
,
B. M.
Yoo
,
B. K.
Ahn
,
Y. H.
Cho
,
H. J.
Shin
,
H.
Yang
,
U.
Paik
,
S.
Kwon
,
J.-Y.
Choi
, and
H. B.
Park
, “
Selective gas transport through few-layered graphene and graphene oxide membranes
,”
Science
342
,
91
95
(
2013
).
24.
L.
Zhang
,
B.
Zhao
,
C.
Jiang
,
J.
Yang
, and
G.
Zheng
, “
Preparation and transport performances of high-density, aligned carbon nanotube membranes
,”
Nanoscale Res. Lett.
10
,
970
(
2015
).
25.
J. H.
Ferziger
,
H. G.
Kaper
, and
H. G.
Kaper
,
Mathematical Theory of Transport Processes in Gases
(
North-Holland
,
1972
).
26.
H.
Ted Davis
, “
Kinetic theory of flow in strongly inhomogeneous fluids
,”
Chem. Eng. Commun.
58
,
413
430
(
1987
).
27.
X.-D.
Din
and
E. E.
Michaelides
, “
Kinetic theory and molecular dynamics simulations of microscopic flows
,”
Phys. Fluids
9
,
3915
3925
(
1997
).
28.
S. V.
Nedea
,
A. J. H.
Frijns
,
A. A.
van Steenhoven
,
A. P. J.
Jansen
,
A. J.
Markvoort
, and
P. A. J.
Hilbers
, “
Density distribution for a dense hard-sphere gas in micro/nano-channels: Analytical and simulation results
,”
J. Comput. Phys.
219
,
532
552
(
2006
).
29.
A.
Frezzotti
,
L.
Gibelli
, and
S.
Lorenzani
, “
Mean field kinetic theory description of evaporation of a fluid into vacuum
,”
Phys. Fluids
17
,
012102
(
2005
).
30.
A.
Frezzotti
,
L.
Gibelli
,
D.
Lockerby
, and
J.
Sprittles
, “
Mean-field kinetic theory approach to evaporation of a binary liquid into vacuum
,”
Phys. Rev. Fluids
3
,
054001
(
2018
).
31.
A.
Frezzotti
,
P.
Barbante
, and
L.
Gibelli
, “
Direct simulation Monte Carlo applications to liquid-vapor flows
,”
Phys. Fluids
31
,
062103
(
2019
).
32.
P.
Barbante
,
A.
Frezzotti
, and
L.
Gibelli
, “
A kinetic theory description of liquid menisci at the microscale
,”
Kinet. Relat. Models
8
,
235
(
2015
).
33.
A.
Rahman
, “
Correlations in the motion of atoms in liquid argon
,”
Phys. Rev.
136
,
A405
(
1964
).
34.
L.
Verlet
, “
Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules
,”
Phys. Rev.
159
,
98
(
1967
).
35.
B. J.
Alder
and
T. E.
Wainwright
, “
Studies in molecular dynamics. I. General method
,”
J. Chem. Phys.
31
,
459
466
(
1959
).
36.
J. R.
Henderson
and
F.
van Swol
, “
On the interface between a fluid and a planar wall
,”
Mol. Phys.
51
,
991
1010
(
1984
).
37.
A.
Frezzotti
, “
Monte Carlo simulation of the heat flow in a dense hard sphere gas
,”
Eur. J. Mech.: B/Fluids
18
,
103
119
(
1999
).
38.
J.
Mittal
,
J. R.
Errington
, and
T. M.
Truskett
, “
Thermodynamics predicts how confinement modifies the dynamics of the equilibrium hard-sphere fluid
,”
Phys. Rev. Lett.
96
,
177804
(
2006
).
39.
G.
Goel
,
W. P.
Krekelberg
,
J. R.
Errington
, and
T. M.
Truskett
, “
Tuning density profiles and mobility of inhomogeneous fluids
,”
Phys. Rev. Lett.
100
,
106001
(
2008
).
40.
M.
Barisik
and
A.
Beskok
, “
Scale effects in gas nano flows
,”
Phys. Fluids
26
,
052003
(
2014
).
41.
S.
Mandal
and
T.
Franosch
, “
Diverging time scale in the dimensional crossover for liquids in strong confinement
,”
Phys. Rev. Lett.
118
,
065901
(
2017
).
42.
K.
Ghosh
and
C. V.
Krishnamurthy
, “
Structural behavior of supercritical fluids under confinement
,”
Phys. Rev. E
97
,
012131
(
2018
).
43.
L.
Wu
,
H.
Liu
,
J. M.
Reese
, and
Y.
Zhang
, “
Non-equilibrium dynamics of dense gas under tight confinement
,”
J. Fluid Mech.
794
,
252
266
(
2016
).
44.
N. F.
Carnahan
and
K. E.
Starling
, “
Equation of state for nonattracting rigid spheres
,”
J. Chem. Phys.
51
,
635
636
(
1969
).
45.
H.
Van Beijeren
and
M. H.
Ernst
, “
The modified Enskog equation
,”
Physica
68
,
437
456
(
1973
).
46.
J.
Fischer
and
M.
Methfessel
, “
Born-Green-Yvon approach to the local densities of a fluid at interfaces
,”
Phys. Rev. A
22
,
2836
(
1980
).
47.
A.
Frezzotti
, “
A particle scheme for the numerical solution of the Enskog equation
,”
Phys. Fluids
9
,
1329
1335
(
1997
).
48.
M. P.
Allen
,
D.
Frenkel
, and
J.
Talbot
, “
Molecular dynamics simulation using hard particles
,”
Comput. Phys. Rep.
9
,
301
353
(
1989
).
49.
A.
Donev
, “
Asynchronous event-driven particle algorithms
,”
Simulation
85
,
229
242
(
2009
).
50.
M. N.
Bannerman
,
R.
Sargant
, and
L.
Lue
, “
Dynamo: A free O (N) general event-driven molecular dynamics simulator
,”
J. Comput. Chem.
32
,
3329
3338
(
2011
).
51.
G. A.
Chapela
,
L. E.
Scriven
, and
H. T.
Davis
, “
Molecular dynamics for discontinuous potential. IV. Lennard-Jonesium
,”
J. Chem. Phys.
91
,
4307
4313
(
1989
).
52.
J. R.
Elliott
, Jr.
, “
Optimized step potential models for n-alkanes and benzene
,”
Fluid Phase Equilib.
194-197
,
161
168
(
2002
).
53.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
54.
J.
Jover
,
A. J.
Haslam
,
A.
Galindo
,
G.
Jackson
, and
E. A.
Müller
, “
Pseudo hard-sphere potential for use in continuous molecular-dynamics simulation of spherical and chain molecules
,”
J. Chem. Phys.
137
,
144505
(
2012
).
55.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
, “
Role of repulsive forces in determining the equilibrium structure of simple liquids
,”
J. Chem. Phys.
54
,
5237
5247
(
1971
).
56.
F.
Pousaneh
and
A. S.
de Wijn
, “
Shear viscosity of pseudo hard-spheres
,”
Mol. Phys.
118
,
1622050
(
2020
).
57.
H.
Sigurgeirsson
and
D. M.
Heyes
, “
Transport coefficients of hard sphere fluids
,”
Mol. Phys.
101
,
469
482
(
2003
).
58.
T.
Ohwada
,
Y.
Sone
, and
K.
Aoki
, “
Numerical analysis of the Poiseuille and thermal transpiration flows between two parallel plates on the basis of the Boltzmann equation for hard-sphere molecules
,”
Phys. Fluids A
1
,
2042
2049
(
1989
).
59.
M.
Sadr
and
M. H.
Gorji
, “
A continuous stochastic model for non-equilibrium dense gases
,”
Phys. Fluids
29
,
122007
(
2017
).
You do not currently have access to this content.