The linear stability analysis of Rivlin–Ericksen fluids of second order is investigated for boundary layer flows, where a semi-infinite wedge is placed symmetrically with respect to the flow direction. Second order fluids belong to a larger family of fluids called order fluids, which is one of the first classes proposed to model departures from Newtonian behavior. Second order fluids can model non-zero normal stress differences, which is an essential feature of viscoelastic fluids. The linear stability properties are studied for both signs of the elasticity number K, which characterizes the non-Newtonian response of the fluid. Stabilization is observed for the temporal and spatial evolution of two-dimensional disturbances when K > 0 in terms of increase of critical Reynolds numbers and reduction of growth rates, whereas the flow is less stable when K < 0. By extending the analysis to three-dimensional disturbances, we show that a positive elasticity number K destabilizes streamwise independent waves, while the opposite happens for K < 0. We show that, as for Newtonian fluids, the non-modal amplification of streamwise independent disturbances is the most dangerous mechanism for transient energy growth, which is enhanced when K > 0 and diminished when K < 0.

1.
R. S.
Rivlin
and
J. L.
Ericksen
, “
Stress deformation relations for isotropic materials
,”
J. Ration. Mech. Anal.
4
,
323
425
(
1955
).
2.
R. G.
Owens
and
T. N.
Phillips
,
Computational Rheology
(
Imperial College Press
,
2002
).
3.
K. R.
Rajagopal
,
A. S.
Gupta
, and
A. S.
Wineman
, “
On a boundary layer theory for non-Newtonian fluids
,”
Int. J. Eng. Sci.
18
,
875
883
(
1980
).
4.
K. R.
Rajagopal
and
P. N.
Kaloni
, “
Some remarks on boundary conditions for flows of fluids of the differential type
,” in
Continuum Mechanics and its Applications
, edited by
G. A. C.
Graham
and
S. K.
Malik
(
Hemisphere Press
,
1989
).
5.
K.
Rajagopal
, “
On boundary conditions for fluids of the differential type
,” in
Navier–Stokes Equations and Related Nonlinear Problems
, edited by
A.
Sequeira
(
Plenum Press
,
1995
).
6.
D. W.
Beard
and
K.
Walters
, “
Elastico-viscous boundary-layer flows I. Two-dimensional flow near a stagnation point
,”
Math. Proc. Cambridge Philos. Soc.
60
,
667
674
(
1964
).
7.
K. R.
Rajagopal
,
A. S.
Gupta
, and
T. Y.
Na
, “
A note on the Falkner–Skan flows of a non-Newtonian fluid
,”
Int. J. Non-Linear Mech.
18
,
313
320
(
1983
).
8.
V. K.
Garg
and
K. R.
Rajagopal
, “
Stagnation point flow of a non-Newtonian fluid
,”
Mech. Res. Commun.
17
,
415
421
(
1990
).
9.
V. K.
Garg
and
K. R.
Rajagopal
, “
Flow of a non-Newtonian fluid past a wedge
,”
Acta Mech.
88
,
113
123
(
1991
).
10.
K.
Vajravelu
and
T.
Roper
, “
Flow and heat transfer in a second grade fluid over a stretching sheet
,”
Int. J. Non-Linear Mech.
34
,
1031
1036
(
1999
).
11.
K.
Vajravelu
and
D.
Rollins
, “
Hydromagnetic flow of a second grade fluid over a stretching sheet
,”
Appl. Math. Comput.
148
,
783
791
(
2004
).
12.
C. M.
White
and
M. G.
Mungal
, “
Mechanics and prediction of turbulent drag reduction with polymer additives
,”
Annu. Rev. Fluid Mech.
40
,
235
256
(
2008
).
13.
E.
De Angelis
,
C. M.
Casciola
,
V. S.
L’vov
,
R.
Piva
, and
I.
Procaccia
, “
Drag reduction by polymers in turbulent channel flows: Energy redistribution between invariant empirical modes
,”
Phys. Rev. E
67
,
056312
(
2003
).
14.
E.
De Angelis
,
C. M.
Casciola
,
V. S.
L’vov
,
A.
Pomyalov
,
I.
Procaccia
, and
V.
Tiberkevich
, “
Drag reduction by a linear viscosity profile
,”
Phys. Rev. E
70
,
055301
(
2004
).
15.
L.
Xi
, “
Turbulent drag reduction by polymer additives: Fundamentals and recent advances
,”
Phys. Fluids
31
,
121302
(
2019
).
16.
L. N.
Trefethen
,
A. E.
Trefethen
,
S. C.
Reddy
, and
T. A.
Driscoll
, “
Hydrodynamic stability without eigenvalues
,”
Science
261
,
578
584
(
1993
).
17.
K. M.
Butler
and
B. F.
Farrell
, “
Three-dimensional optimal perturbations in viscous shear flow
,”
Phys. Fluids A
4
,
1637
1650
(
1992
).
18.
M. T.
Landahl
, “
A note on an algebraic instability of inviscid parallel shear flows
,”
J. Fluid Mech.
98
,
243
251
(
1980
).
19.
L.
Brandt
, “
The lift-up effect: The linear mechanism behind transition and turbulence in shear flows
,”
Eur. J. Mech., B: Fluids
47
,
80
96
(
2014
).
20.
J. E.
Dunn
and
K. R.
Rajagopal
, “
Fluids of differential type: Critical review and thermodynamic analysis
,”
Int. J. Eng. Sci.
33
,
689
729
(
1995
).
21.
J. E.
Dunn
and
R. L.
Fosdick
, “
Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade
,”
Arch. Ration. Mech. Anal.
56
,
191
252
(
1974
).
22.
R. L.
Fosdick
and
K. R.
Rajagopal
, “
Anomalous features in the model of “second order fluids
,””
Arch. Ration. Mech. Anal.
70
,
145
152
(
1979
).
23.
K. C.
Porteous
and
M. M.
Denn
, “
Linear stability of plane Poiseuille flow of viscoelastic liquids
,”
Trans. Soc. Rheol.
16
,
295
(
1972
).
24.
D. H.
Chun
and
W. H.
Schwarz
, “
Stability of a plane Poiseuille flow of a second order fluid
,”
Phys. Fluids
11
,
5
9
(
1968
).
25.
K.
Sadeghy
,
S. M.
Taghavi
,
N.
Khabazi
,
M.
Mirzadeh
, and
I.
Karimfazli
, “
On the use of hydrodynamic instability test as an efficient tool for evaluating viscoelastic fluid models
,”
Adv. Stud. Theor. Phys.
1
,
367
379
(
2007
).
26.
R.
Sureshkumar
and
A. N.
Beris
, “
Linear stability analysis of viscoelastic Poiseuille flow using an Arnoldi-based orthogonalization algorithm
,”
J. Non-Newtonian Fluid Mech.
56
,
151
182
(
1995
).
27.
M.
Zhang
,
I.
Lashgari
,
T. A.
Zaki
, and
L.
Brandt
, “
Linear stability analysis of channel flow of viscoelastic Oldroyd-B and FENE-P fluids
,”
J. Fluid Mech.
737
,
249
279
(
2013
).
28.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge Mathematical Library Cambridge University Press
,
2000
).
29.
W.
Tollmien
, “
Über die entstehung der turbulenz (the production of turbulence)
,” in
Vorträge aus dem Gebiete der Aerodynamik und verwandter Gebiete
, edited by
A.
Gilles
,
L.
Hopf
, and
T. V.
Kármán
(
Springer
,
Berlin, Heidelberg
,
1930
), pp.
18
21
.
30.
P. J.
Schmid
and
D. S.
Henningson
,
Stability and Transition in Shear Flows, Applied Mathematical Sciences
(
Springer
,
New York
,
2000
).
31.
M.
Cracco
, “
Linear stability and transient behaviour of viscoelastic fluids in boundary layers
,” Ph.D. thesis,
Cardiff University
,
2019
.
32.
T.
Ellingsen
and
E.
Palm
, “
Stability of linear flow
,”
Phys. Fluids
18
,
487
488
(
1975
).
33.
L. N.
Trefethen
,
Spectral Methods in MATLAB
(
Society for Industrial and Applied Mathematics
,
2000
).
34.
W. O.
Criminale
,
T. L.
Jackson
, and
R. D.
Joslin
, in
Theory and Computation of Hydrodynamic Stability
, Cambridge Monographs on Mechanics (
Cambridge University Press
,
2003
).
35.
N.
Hoda
,
M. R.
Jovanović
, and
S.
Kumar
, “
Energy amplification in channel flows of viscoelastic fluids
,”
J. Fluid Mech.
601
,
407
424
(
2008
).
36.
B. K.
Lieu
,
M. R.
Jovanović
, and
S.
Kumar
, “
Worst-case amplification of disturbances in inertialess Couette flow of viscoelastic fluids
,”
J. Fluid Mech.
723
,
232
263
(
2013
).
37.
J.
Page
and
T. A.
Zaki
, “
Streak evolution in viscoelastic Couette flow
,”
J. Fluid Mech.
742
,
520
551
(
2014
).
38.
N.
Burshtein
,
K.
Zografos
,
A. Q.
Shen
,
R. J.
Poole
, and
S. J.
Haward
, “
Inertioelastic flow instability at a stagnation point
,”
Phys. Rev. X
7
,
041039
(
2017
).
39.
L. H.
Gustavsson
, “
Initial-value problem for boundary layer flows
,”
Phys. Fluids
22
,
1602
1605
(
1979
).
40.
P.
Corbett
and
A.
Bottaro
, “
Optimal perturbations for boundary layers subject to stream-wise pressure gradient
,”
Phys. Fluids
12
,
120
130
(
2000
).
41.
P. J.
Schmid
, “
Linear stability theory and bypass transition in shear flows
,”
Phys. Plasmas
7
,
1788
1794
(
2000
).
You do not currently have access to this content.