Core annular flow theory is used to model the parallel flow of fluids of different phases and has been used to describe drag reduction in the context of internal flows bounded by superhydrophobic surfaces. The work presented here is an extension of core annular flow theory to the study of the adiabatic section of heat pipes. Our aim is to develop a first-principles estimate of the conditions necessary to maximize the (counter) flow of liquid and vapor and, by extension, the axial flow of heat. The planar and axisymmetric geometries are examined as are heat pipes containing vs being devoid of a wick. In the wick vs no-wick cases, the peripheral return flow of liquid is, respectively, driven by capillarity and by gravity. Our model is used to predict velocity profiles and the flux-maximizing pressure gradient ratio (vapor-to-liquid). We further obtain estimates for the optimum thickness of the liquid layer. Note finally that when the liquid flow occurs via capillary pumping, there is a minimum surface tension below which the wick cannot supply a sufficient flow of liquid. We characterize this critical point in terms of the properties of the working fluid and of the wick.

1.
Alduchov
,
O. A.
and
Eskridge
,
R. E.
, “
Improved magnus form approximation of saturation vapor pressure
,”
J. Appl. Meteorol.
35
,
601
609
(
1996
).
2.
Busse
,
A.
,
Sandham
,
N. D.
,
McHale
,
G.
, and
Newton
,
M. I.
, “
Change in drag, apparent slip and optimum air layer thickness for laminar flow over an idealised superhydrophobic surface
,”
J. Fluid Mech.
727
,
488
508
(
2013
).
3.
Cheng
,
L.
and
Mewes
,
D.
,
Advances in Multiphase Flow and Heat Transfer
(
Bentham Science Publishers
,
2012
), Vol. 3.
4.
Daniel
,
S.
,
Chaudhury
,
M. K.
, and
Chen
,
J. C.
, “
Fast drop movements resulting from the phase change on a gradient surface
,”
Science
291
,
633
636
(
2001
).
5.
Durlofsky
,
L.
and
Brady
,
J. F.
, “
Analysis of the Brinkman equation as a model for flow in porous media
,”
Phys. Fluids
30
,
3329
3341
(
1987
).
6.
Faghri
,
A.
, “
Review and advances in heat pipe science and technology
,”
J. Heat Transfer
134
,
123001
(
2012
).
7.
Flynn
,
M. R.
and
Bush
,
J. W. M.
, “
Underwater breathing: The mechanics of plastron respiration
,”
J. Fluid Mech.
608
,
275
296
(
2008
).
8.
Gan
,
G.
and
Riffat
,
S. B.
, “
A numerical study of solar chimney for natural ventilation of buildings with heat recovery
,”
Appl. Therm. Eng.
18
,
1171
1187
(
1998
).
9.
Gruncell
,
B. R. K.
,
Sandham
,
N. D.
, and
McHale
,
G.
, “
Simulations of laminar flow past a superhydrophobic sphere with drag reduction and separation delay
,”
Phys. Fluids
25
,
043601
(
2013
).
10.
Hampel
,
V.
, “
Underground nuclear power station using self-regulating heat-pipe controlled reactors
,” U.S. patent 4,851,183 (
25 July 1989
).
11.
Joseph
,
D.
,
Bai
,
R.
,
Chen
,
K. P.
, and
Renardy
,
Y. Y.
, “
Core-annular flows
,”
Annu. Rev. Fluid Mech.
29
,
65
90
(
1997
).
12.
Joseph
,
D.
,
Bai
,
R.
,
Liao
,
T.
,
Huang
,
A.
, and
Hu
,
H.
, “
Parallel pipelining
,”
J. Fluids Eng.
117
,
446
449
(
1995
).
13.
Kemme
,
J.
, “
High-performance heat pipes
,” Technical Report No. LA-DC-9027; CONF-671045-4,
Los Alamos Scientific Laboratory
,
New Mexico
,
1968
.
14.
Khrustalev
,
D.
and
Faghri
,
A.
, “
Thermal analysis of a micro heat pipe
,”
J. Heat Transfer
116
,
189
198
(
1994
).
15.
McHale
,
G.
,
Flynn
,
M. R.
, and
Newton
,
M. I.
, “
Plastron induced drag reduction and increased slip on a superhydrophobic sphere
,”
Soft Matter
7
,
10100
10107
(
2011
).
16.
McHale
,
G.
,
Newton
,
M. I.
, and
Shirtcliffe
,
N. J.
, “
Immersed superhydrophobic surfaces: Gas exchange, slip and drag reduction properties
,”
Soft Matter
6
,
714
719
(
2010
).
17.
Ochoa-Tapia
,
J. A.
and
Whitaker
,
S.
, “
Momentum transfer at the boundary between a porous medium and a homogeneous fluid-II. Comparison with experiment
,”
Int. J. Heat Mass Transfer
38
,
2647
2655
(
1995
).
18.
Ooms
,
G.
,
Vuik
,
C.
, and
Poesio
,
P.
, “
Core-annular flow through a horizontal pipe: Hydrodynamic counterbalancing of buoyancy force on core
,”
Phys. Fluids
19
,
092103
(
2007
).
19.
Panchanathan
,
D.
,
Rajappan
,
A.
,
Varanasi
,
K. K.
, and
McKinley
,
G.
, “
Plastron regeneration on submerged superhydrophobic surfaces using in situ gas generation by chemical reaction
,”
ACS Appl. Mater. Interfaces
10
,
33684
33692
(
2018
).
20.
Pastukhov
,
V. G.
,
Maidanik
,
Y. F.
,
Vershinin
,
C. V.
, and
Korukov
,
M. A.
, “
Miniature loop heat pipes for electronics cooling
,”
Appl. Therm. Eng.
23
,
1125
1135
(
2003
).
21.
Peterson
,
G.
,
Heat Pipes–Modeling, Testing, and Applications
(
John Willey & Sons, Inc.
,
USA
,
1994a
).
22.
Peterson
,
G.
,
An Introduction to Heat Pipes: Modeling, Testing, and Applications
, Wiley Series in Thermal Management of Microelectronic and Electronic Systems (
Wiley
,
New York; Chichester
,
1994b
), p.
c1994
.
23.
Qu
,
J.
,
Wu
,
H.
, and
Cheng
,
P.
, “
Effects of functional surface on performance of a micro heat pipe
,”
Int. Commun. Heat Mass Transfer
35
,
523
528
(
2008
).
24.
Reay
,
D.
,
McGlen
,
R.
, and
Kew
,
P.
,
Heat Pipes: Theory, Design and Applications
(
Butterworth-Heinemann
,
2013
).
25.
Shafahi
,
M.
,
Bianco
,
V.
,
Vafai
,
K.
, and
Manca
,
O.
, “
An investigation of the thermal performance of cylindrical heat pipes using nanofluids
,”
Int. J. Heat Mass Transfer
53
,
376
383
(
2010
).
26.
Shukla
,
K. N.
 et al, “
Heat pipe for aerospace applications—An overview
,”
J. Electron. Cool. Therm. Control
05
,
1
(
2015
).
27.
Slattery
,
J. C.
, “
Two-phase flow through porous media
,”
AIChE J.
16
,
345
352
(
1970
).
28.
Vafai
,
K.
and
Tien
,
C. L.
, “
Boundary and inertia effects on flow and heat transfer in porous media
,”
Int. J. Heat Mass Transfer
24
,
195
203
(
1981
).
29.
Zhang
,
J.
,
Watson
,
S. J.
, and
Wong
,
H.
, “
Fluid flow and heat transfer in a dual-wet micro heat pipe
,”
J. Fluid Mech.
589
,
1
31
(
2007
).
30.
Zhu
,
N.
and
Vafai
,
K.
, “
Analysis of cylindrical heat pipes incorporating the effects of liquid–vapor coupling and non-Darcian transport—A closed form solution
,”
Int. J. Heat Mass Transfer
42
,
3405
3418
(
1999
).
31.
Zhu
,
N.
and
Vafai
,
K.
, “
Vapor and liquid flow in an asymmetrical flat plate heat pipe: A three-dimensional analytical and numerical investigation
,”
Int. J. Heat Mass Transfer
41
,
159
174
(
1998
).
32.
Zohuri
,
B.
,
Heat Pipe Design And Technology
, A Practical Approach (
CRC Press
,
2011
).
You do not currently have access to this content.