The notion of inertial reference frame is abandoned and replaced by a local reference frame on which the fundamental law of mechanics is expressed. The distant interactions of the cause and effect are modeled by the propagation of waves from one local reference frame to another. The derivation of the equation of motion on a straight segment serves to express the proper acceleration as the sum of the accelerations imposed on it, in the form of an orthogonal local Helmholtz–Hodge decomposition, in one divergence-free and another curl-free contribution. The inertia term is written in the form of a gradient of a scalar potential and a dual curl of a vector potential. The adopted formalism opens the way to a reformulation of the material derivative in terms of potentials and allows the removal of the fictitious forces from continuum mechanics. The discrete equation of motion, invariant by rotation at a constant angular velocity, is used to conserve the angular momentum per unit of mass, in addition to the conservation of energy per unit of mass and acceleration. All the variables in this equation are expressed only with two fundamental units, length and time.

1.
Y.
Kosmann-Schwarzbach
,
The Noether Theorems: Invariance and Conservations Laws in the Twentieth Century
(
Springer-Verlag
,
New York
,
2011
).
2.
C.
Masreliez
, “
On the origin of inertial force
,”
Apeiron
13
,
43
77
(
2006
).
3.
C.
Masreliez
, “
Motion, inertia and special relativity—A novel perspective
,”
Phys. Scr.
75
,
119
125
(
2007
).
4.
S.
Roux
, “
Découvrir le principe d’inertie
,” in
Recherches sur la Philosophie et le Langage
(
Vrin
,
Paris
,
2006
), Vol. 24, pp.
453
515
.
5.
J. A.
Brons
,
P. J.
Thomas
, and
A.
Pothérat
, “
Mean flow anisotropy without waves in rotating turbulence
,”
J. Fluid Mech.
889
,
A37
(
2020
).
6.
M.
Buzzicotti
,
P.
Clark Di Leoni
, and
L.
Biferale
, “
On the inverse energy transfer in rotating turbulence
,”
Eur. Phys. J. E
41
,
131
(
2018
).
7.
S.
Galtier
and
V.
David
, “
Inertial/kinetic-Alfvén wave turbulence: A twin problem in the limit of local interactions
,”
Phys. Rev. Fluids
5
,
044603
(
2020
).
8.
F.
Godeferd
and
F.
Moisy
, “
Structure and dynamics of rotating turbulence: A review of recent experimental and numerical results
,”
Appl. Mech. Rev.
67
,
030802
030811
(
2015
).
9.
C.
Hamman
,
J.
Klewick
, and
R. M.
Kirby
, “
On the Lamb vector divergence in Navier–Stokes flows
,”
J. Fluid Mech.
610
,
261
284
(
2008
).
10.
H.
Lamb
,
Hydrodynamics
, 6th ed. (
Dover
,
New York
,
1993
).
11.
J.-P.
Caltagirone
,
Discrete Mechanics, Concepts and Applications
(
ISTE, John Wiley & Sons
,
London
,
2019
).
12.
L.
Landau
and
E.
Lifchitz
,
The Classical Theory of Fields
, 3rd Revised English Edition (
Pergamon Press Ltd.
,
Oxford
,
1971
).
13.
J.-P.
Caltagirone
and
S.
Vincent
, “
On primitive formulation in fluid mechanics and fluid-structure interaction with constant piecewise properties in velocity-potentials of acceleration
,”
Acta Mech.
231
,
2155
2171
(
2020
).
14.
P.
Angot
,
J.-P.
Caltagirone
, and
P.
Fabrie
, “
Fast discrete Helmholtz–Hodge decompositions in bounded domains
,”
Appl. Math. Lett.
26
,
445
451
(
2013
).
15.
H.
Bhatia
,
G.
Norgard
,
V.
Pascucci
, and
P.
Bremer
, “
The Helmholtz-Hodge decomposition-A survey
,”
IEEE Trans. Visualization Comput. Graphics
19
,
1386
1404
(
2013
).
16.
M.
Desbrun
,
A.
Hirani
,
M.
Leok
, and
J.
Marsden
, “
Discrete exterior calculus
,” arXiv:math/0508341v2:1–53 (
2005
).
17.
J.
Guermond
,
P.
Minev
, and
J.
Shen
, “
An overview of projection methods for incompressible flows
,”
Comput. Methods Appl. Mech. Eng.
195
,
6011
6045
(
2006
).
18.
C.
Speziale
, “
A review of material frame-indifference in mechanics
,”
Appl. Mech. Rev.
51
,
489
504
(
1998
).
19.
C.
Truesdell
and
W.
Noll
, “
The non-linear field theories of mechanics
,” in
Encyclopedia of Physics
(
Springer-Verlag
,
1992
), Vol. III.
You do not currently have access to this content.